

Introduction

Installing the Ecere Software Development Kit

Section 1 - Programming in eC
A very first program
Variables and data types
Arithmetic, relational, logical and bitwise operators
Flow control
Structures
Enumerations
Arrays, pointers and memory

Section 2 - Object-Oriented Programming with eC
Classes, methods and instances
Inheritance
Polymorphism and virtual methods
Properties
Encapsulation and access control
Importing and working with multiple modules
Name Spaces
Units and conversion properties
Bit collection classes

Section 3 - Building Graphical User Interfaces
Using the form designer and property sheet
Using static controls such as labels and pictures
Handling events, push buttons, check boxes and option boxes
Inputting data through edit boxes
Displaying message boxes

Section 4 - Drawing Graphics
Drawing on the Surface
Using Font and Bitmap resources
Loading and Manipulating Images

Section 5 - Using the debugger
Running, breaking, stepping and resuming
Inspecting the value of variables and expressions

Section 6 - Manipulating Text Strings
C strings
Constant strings, dynamically versus statically allocated strings
Converting between numerals and text
Browsing through the strings
Operations with multiple strings
Working with Unicode to support international languages

Section 7 - Accessing and Manipulating Files
Opening files
Reading from and Writing to files
Manipulating File Names
Directories
Temporary Files
Using archives and project resources
Listing files and directories
Spawning other processes
Monitoring opened files

Section 8 - Network Programming
Sockets Programming: working with TCP/IP and UDP protocols
Using Secured Sockets Layers
Distributed Objects
Working with XML-based protocols

Section 9 - More advanced GUI programming
Using data controls such as list boxes and drop boxes
Presenting common dialogs such as file selection dialogs
Working with hot keys and labeling controls
Handling keyboard events
Taking advantage of anchored positioning
Building your own controls
Manipulating the windows
Interacting with the clipboard
Working with timers
Dealing with the time and date

Section 10 - Data Structures
Linked Lists
Binary Trees

Section 11 - 3D Graphics Programming
Basics of 3D Graphics
Cameras
Objects
Materials
Meshes
Matrices and Quaternions

Section 12 - Multi threading
Spawning new threads
Mutexes
Using semaphores
Communicating between threads: a sample event queue

Section 13 - Putting it all together: an in depth study of writing a 3D
chess game

The game of chess
Building an outer shell interface
Representing and interfacing with a 2D chess board
Playing across the network
Displaying a 3D chess board
Interfacing in 3 dimensions
The gift of intelligence

Section 14 - Video Game Type Interaction
Relative mouse movement
Interacting with Joysticks
Working in full screen

Section 15 - Writing database applications
Designing Tables
Storing and retrieving data
Indexing and searching for data
The cross roads of databases and objects: active records

Section 16 - Custom data types
Defining custom data types
Converting to and from text strings
Serialization
Comparison and Sorting
Specifying how to display data in controls
Using the data box control
Building custom data types editors

Section 17 - Building custom interface skins

Section 18 - Advanced eC programming
Reference counting
Run time class information and generic type parameters
Observer pattern
Subclasses, class data and properties
Loading modules dynamically
Retrieving and calling methods from class objects
Building class designers to integrate with the IDE
Debugging using MemoryGuard

Introduction

Computer programming is nothing less than a form of art. It is
an unlimited vehicle for creativity, and also a great inquisitive tool for
analyzing our various conceptions of the world. Therefore there are
diverse good reasons one might decide to learn programming, each of
them probably just as good as the others. Whether you decide to learn
it as a hobby or for professional purposes, it is a great skill to acquire
which is very likely to prove itself useful in this high tech age. And yes,
it occasionally tends to be much fun.

The kind of programming we will study is the classic type.
These days many people often answer HTML when asked what
language they program in. Hyper Text Markup Language - the core
web language used to format the contents of web pages. Yes, some
web pages include JavaScript code to perform more advanced user
interaction, or are backed by server side programming in PHP, for
example. But HTML or XML hardly qualify as "programming" languages
(the M stands for "Markup"), and the latter are more oriented towards
this whole web back end type of programming. We will focus on
building software applications which can stand and run by themselves.

This book will adopt a practical, goal driven approach to
learning to program. In each chapter, a clear idea of what is to be
learned will be stated, and by the end of it you should have gotten
hands on experience and feel confident you have mastered the subject
matter.

We will focus strictly on software development using the Ecere
Software Development Kit. We will also be writing code in a single
programming language, eC. However, if learned correctly, the concepts
you will master, the knowledge you will gain, and the way you think in
order to solve a problem through programming should be independent
from and easily adaptable to any other development tool or
programming language you will decide to use in the future.

The Ecere SDK offers a well-rounded suite of tools, which
consist of an Integrated Development Environment, a set of compiling
tools for the eC language, as well as a cross-platform runtime library
featuring among other things a GUI toolkit, a networking library and a
3D engine. It is also backed by the GNU GCC compiling tools suite,
which can also be used to program in the C and C++ languages.

This version of the Ecere SDK included with this book is cross
platform software capable of running on Windows, Linux and Mac OS X.
Please refer to the appropriate part of the following notes on Installing
the Ecere SDK for detailed installation instructions specific to the
platform on which you would like to start developing software. The
following chapters assume the SDK is properly installed.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 1

Installing the Ecere Software Development Kit

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 2

Section 1

Programming in eC

A very first program
Variables and data types
Arithmetic, relational, logical and bitwise operators
Flow control
Structures
Enumerations
Arrays, pointers and memory

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 3

A very first program

A thousand miles journey starts with a single step.
-- Tao Te Ching, verse 64

To keep with the tradition set forth by Brian W. Kernighan, co-
author of the book The C Programming Language, and because small
incremental goals are the key to rapid progress, our first attempt at
controlling the computer will be to make it display the following text to
a console:

hello, world

However simple and useless that may seem, we will learn a lot
in the process as we familiarize ourselves with a software development
environment.

Although the vastness of possibilities they offer us often
conceals the reality, computers are in essence machines simply
executing specific instructions. The actual set of instructions being
executed is dependent on the architecture of the Central Processing
Unit (CPU) of the computer on which to run them. The most common
architecture family today in personal computers is the Intel x86 series
of processors. The internal representation of these instructions, as of
any data in a computer, is in binary format (0 - off or 1 - on).

Computer programs are a collection of such instructions to be
executed in an orderly manner as to serve a specific purpose. To
facilitate the edition and organization of a program, a text
representation in a particular programming language is typically used.
An assembly language maps one to one each CPU instruction to its
textual name. An assembler is used to convert a program written in
assembly into executable code.

But what exactly is an instruction? And how can we build
complex applications such as a 3D video game out of them? Each
instruction by itself accomplishes an extremely specific task. It is the
unrestricted ways of arranging them which gives the flexibility to
create complex software.

Many instructions perform arithmetic operations. Others simply
provide way of transferring data between the CPU registers and system
memory. Combining a few of these, we can produce output on devices
such as display monitors, printers or receive input from devices such
as keyboards or mice. We can transfer data across networks or
produce sound on an audio system.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 4

Although assembly programming gives the programmer the
ultimate control on how instructions are to be executed, and therefore
can theoretically claim the ultimate performance, it has some
inconveniences which called for the development of higher level
programming languages. One of such a drawback is its inherent
association to the computer architecture: assembly is not portable.
Furthermore, even though some people are very keen of assembly,
and very efficient in writing applications entirely in it, most
programmers will find themselves more comfortable and more
productive with a higher level language.

Of the thousands of programming languages which have been
designed, one of the most influential and enduring is the C
programming language, designed by Dennis Ritchie in 1972 for use
with the UNIX operating system. C is a purely procedural language,
devoid of any object oriented philosophy. However, C has inspired
many other object oriented languages such as Objective C, C++, Java,
C#. eC (The e stands for Ecere) is no exception.

C is great because it is portable, yet enables a fine level of
access to the system memory. This allows for C to be very efficient in
terms of program size, memory usage and runtime performance. In
this respect, C could be thought of as the next best thing to assembly
programming. C was designed as a system programming language,
and most operating systems cores today are still written in a mixture
of C and assembly. C comes with the C standard library, a standard set
of functionality covering many aspects of interacting with the hardware
and operating system such as file access, memory management, input/
output and mathematical operations.

The Ecere philosophy of programming fully recognizes and
embraces the power of C. As such, the eC language is derived from C
and is highly compatible with it, more so than most other derivatives.
What eC adds to C is a remarkable touch of elegance and simplicity
along with object oriented characteristics. It strives to keep its C roots
intact.

Building an eC, C or C++ application is very similar. First, the
program is written using a text editor and saved as ASCII text. A
specific extension is associated with each language (.ec for eC; .c for C;
.cpp, .cxx, .cc for C++). Then, a compiler is used to compile the source
code into object code. As a final step, a linker builds an executable file
out of one or more object file. To simplify this process, a "makefile"
containing rules specifying how to perform these actions is typically
used alongside a "make" program. Nowadays, the entire process can
be done with the help of an Integrated Development Environment
which presents an intuitive interface to editing, building and debugging
applications. However, it is still common place for UNIX programmers
to stick with basic text editors such as vi or emacs and makefiles.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 5

Before the widespread appearance of graphical user interfaces,
consoles receiving characters input from a keyboard, and displaying
text output on a display monitor were the primary source of user
interaction with computer programs. Multiple terminals providing such
console interfaces were often attached to a central computer (which
tended to require a lot of space). Although diminishing in popularity,
console interfaces can still be found today on most operating systems
along with a shell in which one can perform system administration
tasks, explore file structures or launch applications by typing in their
location.

Programming console applications such as the "hello, world"
program we are about to write can reasonably be thought to be
simpler than developing GUI applications (although you will realize this
to be a lot less true with the Ecere SDK, which greatly simplifies GUI
programming, than it is with e.g. developing GUIs in C++). Our first
applications will thus be interfacing only through the console. Don't
worry however, it won't be too long before we delve into building more
attractive applications.

Let's start! First, launch the Ecere IDE. To be able to build any
application, we will require a project. Let's create a new project: using
the menu bar's Project, New we get the following dialog:

We need to provide a project name, and a location for it.
Avoiding spaces and sticking to ASCII characters for the project name
is recommended. Use a new folder for it, making sure you have the
right permissions in the parent folder to create it. The IDE will create
the folder if it does not exist. Sticking to ASCII characters for the
project location is also a good idea, but spaces there will be fine. We're
building a console only application so we don't require a form, let's
take out the check mark from Create Form. The target type specifies
whether we want to build an executable application or a library to be
used as a component part of another application. In our case we want
to build an executable. After pressing OK, our project will be ready to
use.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 6

Now we can start adding source files to our project. We will call
our only file "hello.ec". To do so, locate the target node (hello.epj) in
the workspace view (shortcut key: Alt+0), and either right click on it
and select "Add Files to Project", or simply press enter while it is
selected. Now type in the name of the file to add (it does not need to
exist prior to adding it).

Notice how the new file is added under the target node. You can
now start editing it by either double clicking on the file or pressing
enter while it is selected. Let's type our first eC program1:

class HelloApp : Application
{
 void Main()
 {
 printf("hello, world");
 }
}

Notice how some words come are colored in blue. These are eC
keywords; they have a special meaning as part of the eC syntax. eC
inherits all C keywords, and adds a few of its own keywords (we will
learn later how to work around this as a possible C compatibility issue).
Here void is also a C keyword, but class is specific to eC (although it is
also a keyword in other OO languages). We will use the same syntax
highlighting scheme as the IDE for code samples throughout the book.

1 The equivalent C program follows. Notice the uppercase Main in eC versus main in C.
#include <stdio.h>
int main()
{
 printf("hello, world");
 return 0;
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 7

Please notice the indentation of the blocks of code. eC, just like
C, is a block structured programming language. Blocks are delimited
by curly braces: { and }, and serve to delimit specific constructs such
as classes and functions. It is strongly suggested that you follow the
same coding conventions when writing your own eC code, which we
will lay out throughout the first chapters. Although not mandatory as
part of the eC or C syntax (unlike Python where blocks are delimited by
indentation), all blocks will be indented by 3 actual space characters
per indentation level. Here "void Main()" is indented by 3 spaces, and
the "printf" function call is indented by 6 spaces.

These very few lines of code actually expose many fundamental
programming concepts which we will take the time to individually
analyze. Grammatically speaking, both eC and C are made of what is
called "definitions". Definitions are the basic building blocks. In both eC
and C, definitions can be broadly categorized as types, variables, and
functions. In eC, types occupy a greater importance than in C, and are
seen to include a lot more code as object oriented concepts are
incorporated into the language.

Indeed, "classes" are a kind of data types which can perform
"methods". The next section on object oriented programming will go
into much further details. For now, all we need to understand is that
we are defining an Application class, HelloApp, and its Main method.
The Application class is particular, because its Main method is the
entry point of an eC application.2

The span of the Main method is determined by its block defined
with curly braces. Similarly, the definition block of the HelloApp class is
defined by curly braces as well.

But what exactly is a method? In procedural programming, we
talk about functions. A method is a special kind of function and we will
learn about what this means in relation to object oriented
programming in later chapters. For now, let's consider this Main
method as if it was a normal function, or procedure.

A function in programming is similar to a program at a smaller
scale, in that it has an entry and exit point, and executes instructions
in between. In fact our program can be thought of as being the Main
function, as that is its entry point. When our Main method has finished
executing, the program execution will stop as well (the application will
terminate). In eC and C, a function consists of a block of multiple
declarations (we will learn more about these in the next chapter) and
statements. One thing a statement can do is call a specific function.

2 In fact, only one Application class can be active in a single program (defining more
than one within the main executable itself yields undefined behavior in regards to which
one will be active; Application classes defined in shared libraries will only be active if
none is defined in the main executable).

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 8

In higher level programming languages, we typically don't deal
with individual instructions but rather with bigger building blocks, such
as "statements", which can trigger multiple instructions. Since line
breaks and spaces in C and eC are only used to separate keywords or
identifiers, a special character is used to distinguish multiple
statements, the semicolon. It must be added to the end of every
statement.

Our Main function here consists of a single statement. This
statement invokes the printf function, which is part of the standard C
library. printf is said to be an identifier. In eC and C, an identifier
starts with a letter and contains only alphanumeric characters or the
underscore (_) symbol. It is important to note that both eC and C are
case sensitive. Language keywords cannot be used as identifiers.
Identifiers are used to refer to a specific definition, such as a variable
or function. When an identifier is used to name a data type, the
identifier used becomes a type and can no longer be used as an
identifier. (More about data types in the next chapter).

It is strongly recommended that you follow the eC conventions
for naming identifiers: all functions and data types start with an
uppercase, all variables start with a lowercase. camelCaseVariables
(or CamelCaseFunction) are favored to older underscore_variables
naming schemes. The standard C library functions however all start
with a lowercase.

Let's look at that printf call in details:

printf("hello, world");

Characters between double quotes form a character string
literal, or simply a string. A string is considered as a whole and forms
an expression. Functions such as printf can be called with arguments
specifying details on the action it is expected to perform. printf's
purpose is to display text on the output of the console. It expects an
argument specifying what text to output.3 When calling a function, a
list of arguments in between parentheses must be given, each
separated by a comma. One expression must be given for each
argument that particular function expects.

We also have the chance to look at the function definition of our
Main here. Notice the empty parentheses meaning the Main function
does not take any argument. The void keyword preceding Main is the
return type of the function. void is a special data type meaning the
function does not return any value.

3 The 'f' in printf stands for "format" and refers to printf's highly customizable
formatting capabilities. We will discuss these in the next chapter.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 9

Now that we are done writing our program, and we have gotten
a good grasp on how it works, let's try building and running it. For
console applications a particular care is required if you are running on
a Windows environment. Access the Project Settings (shortcut key: Alt-
F7, or under the Project menu) and make sure you select the "Console
Application" checkbox.

First, try building the application. Select from the menu bar
Project, Build (shortcut key – F7). If everything is configured correctly,
you should get the following output in the build output tab:

Building project hello using the Debug configuration...
Generating symbols...
hello.ec
Compiling...
hello.ec
hello.c
Writing symbol loader...
hello.main.ec
hello.main.ec
hello.main.c
Linking...

hello.exe (Debug) - no error, no warning

If you are not getting this but errors instead, the Ecere SDK
might not be installed properly. Please refer to the installation notes
again. If you are getting syntax errors, you might have mistyped the
program. Here is the unfortunate result of forgetting the semicolon:

Building project hello using the Debug configuration...
Compiling...
hello.ec
 hello.ec:6:4: error: syntax error
 hello.ec:6:4: error: syntax error

hello.exe (Debug) - 2 errors, no warning

Double clicking or pressing enter on the error line in the build
output view will bring you directly to the offending line of code. If
everything went right, you should now have built your first eC
program. Now bring up a terminal window (Command Prompt on
Windows) and run the executable from the shell. If you built using the
default debug configuration, you would do so by typing "debug/hello"
at your shell from within the project's directory. The output should look
like this:

C:\Book\hello>debug\hello
hello, world

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 10

Variables and data types

The world is formed from the void,
like utensils from a block of wood.

The Master knows the utensils,
yet keeps to the block:

thus she can use all things.
-- Tao Te Ching, verse 28

Programming is much about handling information, or data.
Information can take many forms: text, numbers, sounds, pictures...
Surprisingly, virtually all kinds of information can be be represented
and therefore stored as numeric values, to various levels of fidelity.
The process of converting otherwise non-numeric information into a
numeric representation is known as digitalization. Computer programs
deal with information strictly in such a digital format.

Data can be permanently stored on mediums such as hard disk
drives and optical disks. But to operate with it, applications require the
information to be stored in system memory, and for many instructions,
in the processor registers themselves. In eC or C however, we do not
deal directly with registers, although it is possible to do so through
inline assembly, small pieces of assembly language embedded in the
eC or C code.

Programming languages therefore must provide a way of
accessing this information in memory. eC and C offer many ways to do
so as we will learn in the upcoming chapters. For now we will consider
the simplest way to do so: variables. Variables in programming are
similar to variables in algebra, in that they hold a value. However, in
programming variables always hold a single value which can be known
simply by reading its contents.

A variables takes the form of an identifier, which is declared to
be of a specific data type. This identifier is allocated and mapped to by
the compiler to a specific memory location, taking up as much space
as its data type requires. Let's take a look at the declaration of a
variable "a", of an integer data type.

int a;

int is a keyword for specifying the integer data type. "a" is the
identifier which can now be used to access the value of this newly
declared variable.

A variable differs from a constant, whose value always remains
the same. A variable can be assigned multiple values throughout its
life span, and its identifier can be used as an expression which will
evaluate to the value it was last assigned.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 11

Let's remember computers store information in binary form, as
a series of 0s and 1s, or bits. To facilitate working with this information,
bits are regrouped into bytes, most often and for all our purposes
consisting of 8 bits. Therefore, a byte can store a numeric value
ranging from 0 to 28-1, or 0 – 255. In both C and eC, the char keyword
is used to specify a byte data type. The name of the char keyword
comes from "character" as characters have long been stored as 8 bit
values, potentially allowing for 256 different characters. The ASCII
standard requires 7 bits and can represent 128 different characters.

However, by default data types are signed, meaning they can
have negative values. This affects the range of the data types, as one
bit must be sacrificed for identifying negative values. For example, for
a char there is still 256 possibles values, but they range from -128 to
127. To specify a data type is to be strictly positive, the unsigned
keyword can be used (signed is also a keyword, although rarely used
since it is the default). eC adds a built in data type for unsigned bytes:
byte. Amounts of memory are usually measured in bytes, or a multiple
such as kilobytes (1024 bytes) or megabytes (1024 x 1024 bytes).

This table illustrates the various C and eC integer data types:

C type (GCC) eC type bits bytes range

char char 8 1 (byte) -128...127

unsigned char byte 8 1 (byte) 0...255

short short 16 2 (word) -32768...32767

unsigned short uint16 16 2 (word) 0...65535

int int 32 4 (double word) -231...231-1

unsigned int uint 32 4 (double word) 0... 232-1

long long int64 64 8 (quadruple word) -263...263-1

unsigned long long uint64 64 8 (quadruple word) 0...264-1

In addition to integers, C and eC offer floating-point data types
which can be used to represent real numbers. Two types of floating-
point can be used, for different precision and range needs:

type bits bytes minimum precision range

float 32 4 6 decimal digits 1.17549435082228750e-38...
3.40282346638528860e+38

double 64 8 10 decimal digits 2.2250738585072014e-308...
1.7976931348623158e+308

A last basic data type exists: void, meaning no data type.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 12

Now that we have a place to store information, we need to
examine how to describe it. C and eC offers various ways of doing so,
we will take a look at a few of them. Representing data in these ways
make up constant expressions. Any expression can be assigned to a
non-constant expression representing a specific storage place, called
in C a modifiable L-value. A variable is such an expression.

The most obvious is the integer decimal notation. To assign the
number 1234 to the variable "a" previously declared, we simply do:

a = 1234;

This is an expression statement, just like our call to the printf
function in our hello, world program. Remember, all statements end
with a semicolon. The = symbol is an operator, operating on two
expressions, a and 1234. The 1234 expression is a constant. The
operator and its two operands together form an assignment expression
After this statement is executed, the variable a now holds the value
1234.

In C and eC, statements can only be written inside function
blocks. The actual function body, enclosed by brackets is itself a
compound statement. This also means that compound statements can
be written inside another compound statement.

Declarations can be written at the global scope, to declare a
global variable, whose scope is the entire source file, if declared as
static4, or the whole module otherwise. A declaration can be part of
structures and classes as we will see in later chapters. They can also
be written inside a compound statement, declaring a local variable,
whose scope is limited to the block in which it is declared.

In eC, declarations and statements cannot be interleaved. That
follows the C standard C89, although it is no longer the case with C99.
Therefore all declarations must figure at the beginning of a compound
block, and no declaration can follow the first statement. However, it is
still possible to declare a variable later inside a newly opened
compound statement, but its scope will be limited to that new block.
eC decides not to allow interleaved declarations and statements for the
sake of regrouping and easily spotting every variables which will be
used within a particular block. To find the declaration of a particular
variable, one knows it will be found a the beginning of the block if it is
a local variable. According to the Ecere philosophy, this is more
elegant and enhances readability.

4 We will cover the usage of the static keyword and other declarations mode in the
chapter about encapsulation and access control.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 13

Let's now put our experiments with variables in perspective. We
will insert it inside an application class so we can compile it. We will
declare our variable a as a local variable. Remember, statements can
only exist within functions. We will use the Main method of our
Application class. Consider the following code sample:

class VariablesApp : Application
{
 void Main()
 {
 int a;
 a = 1234;
 }
}

It is now possible to compile and execute this code. Remember
you need to write it in a file with a .ec extension and add it to a project
in order to compile it with the Ecere IDE. In order to save space
following code snippets will only include the contents of the block.
Now, say we want to add a second variable, named b. As we learned,
we cannot declare b after the assignment statement. However,
multiple declarators can be used to declare multiple variables of the
same data types in a single declaration. Here we also assign the value
of a to this new variable b:

 int a, b;
 a = 1234;
 b = a;

Now b also holds the same value as a, 1234.

Let's try working with a floating-point variable, to store a
fractional number, say 1.618.

 double phi = 1.618;

Notice here how we assigned the value right inside the
declaration. Each declarator can have an initializer. The decimal
notation for fractional number is quite straightforward. It also supports
scientific notation such as 1.234e-10. The number 0.5 can also be
written omitting the 0, simply as .5. To mark a floating-point number as
using single precision, a lowercase f is added to the end of it, like this:

 float phi = 1.618f;

The trailing 0s can also be omitted as in 2. (double precision) or
2.f (single precision) to represent 2.0.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 14

Another important notation is hexadecimal system. In
hexadecimal, 6 letters (a – f) are used as digits in addition to the 10
decimal digits, for a total of 16 digits (base 16). Each digit of an
hexadecimal number represents a different power of 16, just like in
decimal each digit represents a different power of 10.

In eC and C, hexadecimal numbers are preceded by 0x, and the
following letters can either be lowercase or uppercase. 0x12AB
represents the number 4779 in decimal (1 x 163 + 2 x 162 + 10 x 161 +
11 x 160).

In a similar manner, C and eC support an octal notation, which
is preceded by a 0. Thus 0123 represents the decimal number 83.

Finally, the last way of specifying values we will look at is
characters. A character is enclosed in between single quotes, such as
'A'. The numeric value it represents correspond to the value the
character is encoded in. The C language typically supports only ASCII
encoding (characters range from 0 – 127). eC files and the Ecere IDE
support UTF-8 encoding (a backward compatible superset of ASCII),
although these should currently be restricted to the characters
(between single quotes) and the contents of string literals (within
double quotes). As such, eC allows any Unicode character within single
quotes, and characters which are not part of the ASCII set should be
used with the unichar data type built in eC. The unichar data type is
unsigned and occupies 32 bit, and is therefore compatible with the
uint eC type. Consider the following examples:

char a = 'A';
unichar tao = '道';

The numeric value of a is now 65, the ASCII mapping of
uppercase roman letter A. The numeric value of tao is now 36947
(0x9053), the Unicode code point of the Chinese character 道.

While we are mentioning characters, we will talk very briefly
about text strings which will be discussed in a much greater depth
later. Text strings are a string or series of characters following each
other. In C and eC they are enclosed in double quotes. We first used
them to say hello to the world in our first program, passing a string as
an argument to the printf function. A string literal (a string constant)
can be assigned to a variable as follows:

char * hello = "hello, world";

The asterisk here means hello is a pointer to data in the char
data type. It points to a string of characters. Pointers is by far the most
difficult concept to grasp for beginning C programmers and will be
covered thoroughly in the last chapter of this section.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 15

Fortunately, most eC programming does not require dealing
with pointers directly, and for now all we need to understand is that a
string is declared as a "char *". It might be important to note however
that the * belongs to the declarator, and not to the declaration
specifiers. This means that to declare multiple strings in a single
declaration, the * must be repeated:

char * h = "hello", * w = "world";

We've now covered all the basic data types and how to assign
values in various notations to variables declared in these data types.
Another valuable concept is the ability to convert one data type into an
other, called casting. It is implicitly done when assigning one data type
to another one, if at all possible. However doing so might result in a
warning from the compiler if there is a possible loss of data, such as
when converting a floating-point to an integer, or converting a 32 bit
integer into a 16 bit integer which cannot hold the entire possible
range of the value it is being assigned.

For this reason (and others you will discover while learning eC),
a cast operator exists, which explicitly tells the compiler that we wish
to perform the conversion. The operator consists of the data type we
are converting to between parentheses. For example here is how we
would transfer the value of a 32 bit integer into a 16 bit integer:

int a = 312;
short b = (short)a;

We know the value inside a fits within the range of a short, but
the compiler assumes a could hold any integer value. Here we inform
the compiler that this is really what we would like to do. If the value we
are casting into a short would not fit within its range, a wrap around
would occur (only the bits which would fit would be used). Particular
care must be paid to casting signed data types: the most significant bit
always being used for the the sign, it differs from types of different
sizes. Conversion between signed and unsigned types must also be
performed cautiously. Conversion from floating-point numbers to
integer numbers result in truncating the number to keep only the
integer part. It does not round the number.

float phi = 1.618;
int p = (int)phi; // p will be equal to 1

Notice our first usage of a comment. Comments are for
providing insightful information embedded in source code and are
ignored by the compiler. This is a C++ style comment which starts
with a double slash and will make the rest of the line a comment. eC
also supports C style comments which start with /* and ends with */. C
style comments can span multiple lines of code.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 16

So far, if you've run the code samples in this chapter, you might
have realized that it is not possible to sense their effect. Indeed, they
do not provide any output, and most readers won't be able to visualize
the changing bits in their system memory just by looking at the
silicone chips making it up. In a moment we'll produce some useful
output and see the value of our variables change.

It is important to note that a conversion from a character to an
integer produces as a result the encoding value, and not the value of a
character which so happens to commonly represent a number. For
example, character '1' converted to an int is 49, not 1. Conversely, the
number 1 converted to a char does not represent the character '1', but
the non printable character with ASCII code 1.

Similarly, a character string converted to an integer does not
result in the decimal number it may represent. "1234" does not
convert into the number 1234, but rather in the address in memory
where the string is located (because a string is a pointer, more about
this later). An integer cannot be converted to a string simply by casting
it either, this is likely to result in the application crashing if we ever try
to use this newly casted string.

How then, will you ask, can we convert our variable for
presenting it on a text display such as a console? Remember printf
from the hello, world of last chapter? We need to learn a bit more
about the possibilities it offers. This wonderful function formats text
strings by allowing to insert inside the format string values of multiple
data types. It does so by replacing special formatting characters by
additional parameters. Formatting characters start with the %
character. Zero or more additional parameters can be passed along,
following the format string. It is important that the number of
additional parameters matches the expectations of the format string.
The data type of each parameter is specified by the formatting
characters, in addition to optional specifications of how we would like
the data to be converted to text. Let's look at some of the format
characters to specify the data type:

Format Action

%d Print a signed integer in decimal notation

%u Print an unsigned integer in decimal notation

%x or %X Print an unsigned integer in hexadecimal notation

%f Print a floating-point number

%c Print the character represented by a byte

%s Print a character string

%% Print a % character (to distinguish from a format char)

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 17

Some examples of format characters which can be used in
combination with the above include:

Character Example Action

[non 0 number] "%2d" yields " 4" for 4 Left pad with
[number] spaces

0 "%02d" yields "04" for 4 If used with a number
as above, pad with 0s
instead of spaces.

.[number] "%.2f" yields "3.14" for 3.142 Limit the number of
digits after the
decimal point.

5

Let's give it a try and print out the values of variables:

class VariablesApp : Application
{
 void Main()
 {
 int a, b;
 float phi = 1.618f;
 char comma = ',';

char * h = "hello", * w = "world";

 printf("The value of a was %d\n", a);
 a = 1234;
 printf("After the assignment, a is now %d\n", a);

 printf("The value of b was %d\n", b);
 b = a;
 printf("After the assignment, b is now %d\n", b);

 printf("phi = %f, more roughly %.1f\n", phi, phi);

 printf("%s%c %s\n", h, comma, w);
 }
}

Go ahead and try running this program. What was the value of
a and b before they were initialized? The answer is undefined behavior:
it could potentially open gates to Oblivion in your living room. Because
local variables are not assigned any particular value until they are
initialized, they contain whatever value was at the memory location
where they were allocated.

5 This coverage of the printf function is only a quick overview, and is not meant as a
reference. For a full description please consult a C reference manual (Try "man 3
printf" on a Linux shell).

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 18

I got the following output when running it:

The value of a was 31268660
After the assignment, a is now 1234
The value of b was 0
After the assignment, b is now 1234
phi = 1.618000, more roughly 1.6
hello, world

The \n which you might have noticed at the end of each string is
an escape character sequence, indicating to move to the next line of
the console. Here is a list of a few useful escape sequences:

\n A new line character (ASCII code 10)

\t A tab character (ASCII code 9)

\x[hexadecimal number] The character corresponding to an
hexadecimal number (0x00 - 0xFF)

\0[octal number] The character corresponding to an octal
number (or the null character if only \0)

\" A double quote character (Useful within " ")

\' A single quote character (useful within ' ')

\\ A backslash character

A last notion to look at in the context of data types, is that
functions can return a value, normally some kind of result of the
actions performed within the function. The data type of this value is
specified before the function name. As we saw earlier, a void return
value means the function does not return a value. A function named
Test returning an integer would be defined as such (we will make it
return the constant 3 for now):

 int Test()
 {
 return 3;
 }

We also learned that functions can be passed arguments. Each
argument has a data type as well. A function expecting a character
string and an integer would be defined like this:

 void Test(char * s, int i)
 {
 }

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 19

A special parameter type allows a variable number of
arguments, using the ellipsis symbol (...). The printf function we just
used is an example of a function with such arguments. The prototype
for printf is the following:

int printf(char * format, ...)

Note that printf returns a value, but we did not make use of it.
Callers are free to ignore a return value. But a call to a function is also
an expression, evaluating to the return value of the function. As such,
it can be passed as an argument to another function, assigned to a
variable, or used anywhere else an expression can be. The following
sample illustrates making use of return values:

int Test()
{
 return 3;
}

class VariablesApp : Application
{
 void Main()
 {
 int a = Test();
 printf("The value of a is now %d\n", a);
 printf("Test() returned %d\n", Test());
 }
}

Note that we chose to declare Test as a global function, rather
than a method inside VariablesApp. Throughout this first section of the
book, we are sticking as much as possible to procedural programming
which is mostly valid in standard C, with the exception that we need to
define an Application class since it is the entry point of an eC program.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 20

Arithmetic, relational, logical, and bitwise operators

Tao gave birth to One,
One gave birth to Two,

Two gave birth to Three,
Three gave birth to all the myriad things.

-- Tao Te Ching, verse 42

A computer's main purpose is obviously to compute. They are
essentially super calculators. As discussed earlier, most CPU
instructions serve to perform various mathematical computations. This
chapter will cover both arithmetic and logic operations.

We already learned about the regular assignment operator '='.
Similarly, there are C operators to perform arithmetic calculations,
some to perform comparisons and others to perform logical operations.
We will also learn about some operators which perform arithmetic and
assignments simultaneously. Let's remember that operators operate
on expressions, which become the operands for the operator. Each C
operator requires a defined number of operands, either one (unary
operator) or two (binary operator), and a special operator which we will
take a look at in a later chapter takes three (the ternary conditional
operator).

Let's start with the most common arithmetic operators: addition
(+), subtraction (-), multiplication (*) and division (/). A few examples
follow:

int a = 3, b = 2, c;
c = a + b; // c will be 5
c = a – b; // c will be 1
c = a * b; // c will be 6
c = a / b; // c will be 1
c = a + b – 2; // c will be 3

Note that the result of an operation between two variable of the
same data types is of that data type as well. There may be a loss of
significant data if the value cannot fit inside that type. For example,
the result of an integer division will only contain the integer part.
Additionally, a result which is either too big or too small for the range,
or would be negative but operands are of an unsigned type, will only
be mapped to the bits within the size of that data type.

Some operators can also operate on operands of different data
types, and in that case the operand with the highest potential for
holding the result will qualify the resulting value. For example, an
addition between a short and an int produces an int, and an int
multiplied by a float produces a float.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 21

Just like in arithmetics, operators have a precedence. Thus, /
and * have a higher precedence than + and -. Operations of equal
precedence, such as + and -, are evaluated from left to right6. C also
offers the parentheses operators (and), which have the highest
precedence, to explicitly override the order of operations. Arithmetic
operators are evaluated before logical operators, logical operators
before comparison operators, and logical operators before assignment
operators (including combined assignment – arithmetic operators).

int result;
result = 1 + 2 * 5; // result is now equal to 11
result = 1 + (2 * 5); // same as above
result = (1 + 2) * 5; // result is now equal to 15

We mentioned earlier that the fractional part of the division of
an integer by another is lost when using the / operator. There is an
operator to obtain the remainder of such a division, or modulo (also
called modulus, but not to be confused with the absolute value or
module which can also bear that name). The symbol for the modulo
operator is the percentage sign: %. It requires two integer operands.

int result, remainder;
result = 11 / 4; // result will be 2
remainder = 11 % 4; // remainder will be 3

For these five operators, there exists an equivalent combined
assignment operator which simultaneously assigns the result of the
operation to the left operand. They are: addition/assignment +=,
subtraction/assignment -=, multiplication/assignment *=,
division/assignment /= and modulo/assignment %=.

int a = 3, b = 4, c = 5;
a += b; // same as: a = a + b, a will be 7
b -= c; // same as: b = b - c, b will be -1
c *= 2; // same as: c = c * 2, c will be 10

Additionally, there are increment and decrement operators,
which are respectively equivalent to += 1 and -= 1. They are ++ and
--, and take a single operand on their right. These are prefix increment
and decrement, as the increment / decrement is performed before the
resulting expression is evaluated.

int a = 3, b;
b = ++a; // a and b will be 4 (same as b = a += 1)

6 This is true of most C operators, but assignment operators have a right to left
associativity, which means they are performed in right to left order.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 22

The postfix version of these two operators also exists, taking an
operand on their left. The increment / decrement is performed after
the resulting expression is evaluated7.

int a = 3, b;
b = a++; // a will be 4, but b will be equal to 3

It is recommended to use the combined assignment operator
whenever appropriate, as it greatly enhances the code readability. It
might take a little bit of time for programmers used to a language
where such operators are not available to naturally adopt them. When
the evaluation of an increment or decrement operator is not used, and
thus whether using the postfix or prefix version does not make any
difference, the preferred Ecere standard is to use the postfix version. In
truth such a case is equivalent to += 1, and one might look at it from
two different angles. The functional aspect of the += operator is that it
behaves like the prefix operator, whereas the syntactical aspect of it is
that the expression to be incremented is on the left side of the
operator, as it is in the postfix increment operator. In such a situation,
the postfix operator is (or was at one point) a more popular choice, as
the name of the C++ language might demonstrate.

int a = 0;
a++; /* preferred to ++a, the assignment expression
 value is unused */

In addition to performing arithmetic, CPU instructions make it
possible to compare two different values. The comparison (or
relational) operators include the equality (==), inequality (!=), greater
than (>), smaller than (<), greater or equal (>=), and smaller or equal
(<=).

The result of such a comparison is either true or it is false. A
true or false value is also called a boolean value. C has no specific type
for a boolean, but eC defines the type bool, which is an enumeration
with two possible values: true (1) and false (0). We will learn more
about eC enumerations later, but for now know that true and false are
valid identifier if they are used with a bool data type. Examples follow:

bool result;
int a = 3;
result = a > 4; // result will be false
result = a <= 3; // result will be true
result = a == 3; // result will be true
result = a != 3; // result will be false

7 Note that the precedence of the postfix version is higher than the precedence of the
prefix version. Both operators are rarely used on the same expression without
parentheses to explicitly dictate the desired precedence so the implications are
beyond the scope of this chapter.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 23

It is very important not to confuse the assignment operator '='
with the comparison operator '=='. It is a common source of errors for
beginners, especially those with previous experience in another
programming language such as BASIC, where '=' is for both
assignment and comparing for equality; or Pascal, where '=' is for
comparison and ':=' is for assignment.

Having two separate operators allows for an assignment
expression to be an expression, and not a statement such as in BASIC.
Every expression evaluates to a value, and in the case of an
assignment expression, it evaluates to the value it is being assigned.
Consider how the two following statements differ:

int a, b;
a = b = 5; // Now both a and b will be 5
a = b == 5; // b was 5, therefore a will be 1 (true)

Most computer programs are full of logical evaluations, which
control the flow of execution as we will learn in next chapter. All logical
operators and flow control statements work with boolean values. Every
basic data type we've seen so far can implicitly be converted to a
boolean type. The conversion is very simple, if it is 0 (that implies that
every bit of the data type is set to 0), it becomes false, if it is non-zero
(if any bit of the data type is not a zero), it becomes true.

Theoretically, a boolean value takes up a single bit, but because
int is the default data type, eC stores the bool data type as an int. In
order to convert a non boolean value into a boolean value, making sure
it is reduced to a single bit to check for its non zero status, you can use
the inequality operator along with the 0 constant, as in the following
example. Doing so is equivalent to ORing all the bits of the value
together (we will learn about the OR operation in just a second). An eC
bool should always have all of its bits set to 0 except the least
significant bit representing the boolean value.

int a = 25;
bool result = a != 0; // result will be true

Logical operators are very useful for combining multiple
comparisons together, they include the AND operator (&&), OR (||) and
NOT (!). Logical operators operate strictly with boolean values. A
proper implicit conversion to a bool (a reduction as described above) is
automatically performed on each side of the operator before
performing the logical operation. This is in contrast with their bitwise
counterparts we will talk about next, which do not perform this
reduction. What this means is that the above check for inequality with
0 is not required when using logical operators (which also always
evaluate to a boolean value), neither is it with flow control statements
which expect a boolean value.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 24

Some programming styles often insist on still putting this
inequality, especially when dealing with pointer types. The Ecere
coding standard however discourages such usage, for the sake of
simplifying expressions and improving readability. Logical operators
produce a unique result for a given set of operands, as described in
their truth tables:

AND
(&&) false true OR

(||) false true NOT
(!)

false false false false false true false true

true false true true true true true false

int a = 3, b = 0;
bool result;
result = a > 0 && a < 5; // result will be true
result = a < 0 || a > 100; // result will be false
result = a || b; // true (same as a != 0 || b != 0)
result = !a; // false (same as a == 0)
result = !b; // true (same as b == 0)

Remember that operations of equal precedence, such as AND
and OR, are evaluated from left to right. To clarify the intent,
parentheses should be used to explicitly state the desired precedence
of OR or AND when they follow each other, rather than rely on the left
to right order. There is a crucial concept to grasp regarding logical
operators. In C, Expressions are evaluated in a lazy manner. If an inner
part of an expression does not require to be evaluated because the
logic already dictates the result of an outer expression, those inner
expressions are not evaluated. This has very important consequences,
as it affects the flow control of a C or an eC program. For example, a
function inside such an expression would never be called if it will have
no effect on the result of the expression. Consider this example:

bool Test(int value)
{
 printf("Testing value %d\n", value);
 return value < 100;
}

int a = 3, b = 4, c = 5;
bool result;
result = a > 10 && Test(b); // Test will not be called
result = Test(b) && a > 10; // Test will be called
result = a != 10 && Test(c); // Test will be called
result = a > 10 && (a = 5); // a will not be modified
result = (a = 5) && a > 10; // a will be assigned 5
result = a != 10 && (a = 5); // a will be assigned 5

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 25

As mentioned earlier, logical operators perform an implicit
conversion to a boolean value. When dealing directly with bits, as it is
often useful in slightly advanced programming, that is not appropriate.
Therefore operators performing operations on each bits also exist, they
are called the bitwise operators. There is four bitwise operators dealing
with logic: bitwise AND (&), OR (|), XOR (^) and NOT (~). The
operation is simply performed on each corresponding bit of the
operands one at a time, and go into the corresponding bit of the result.

byte a = 3; // binary form: 00000011
byte b = 6; // binary form: 00000110
byte c;
c = a & b; // c will be 2 (00000010)
c = a | b; // c will be 7 (00000111)
c = a ^ b; // c will be 5 (00000101)
c = ~b; // c will be 249 (11111001)

Note that the XOR operator has no non-bitwise equivalent in C,
although a non bitwise logical operation can be performed by first
explicitly converting to a boolean type and then using the bitwise XOR.
Since it didn't figure earlier, here is the XOR truth table. As you can see
a XOR operation is true only if a single one of the two operands is true.

XOR
(^) false true

false false true

true true false

int a = 3, b = 4;
bool result;
result = (a != 0) ^ (b != 0); // Non bitwise use of XOR

In addition to these logic bitwise operators, there are bitwise
operators to shift the bits. The bits are simply displaced by the number
of bits specified by the right operand. The left shift operator (<<) shifts
the bits towards the more significant bits, whereas the right shift (>>)
shifts the right towards the least significant bit. When shifting left, the
least significant bit becomes 0, and the most significant bit which can
be hold in the data type is lost. Similarly, when shifting right, the most
significant bit of the data type becomes 0, and the least significant bit
is lost. Notice how bit shifting multiplies and divides by powers of 2.

byte a = 3; // binary form: 00000011
byte b = 6; // binary form: 00000110
byte c;
c = a << 3; // c will be 24 (00011000)
c = b >> 2; // c will be 1 (00000001)

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 26

Just like the arithmetic operators, all of the bitwise operators
except for the bitwise NOT operator have assignment counterparts:
<<=, >>=, &=, |= and ^=.

The precedence the bitwise operators in C is particularly low,
right between the non bitwise logical operators and comparison
operators. This is particularly confusing when used alongside
comparison operators, and therefore it is strongly advised that
parentheses be used to ensure of the intent. For example, one who
would like to verify if both bits 2 and 3 were set might get confused:

byte a = 14; // binary form: 00001110
bool c;
c = a & 6 == 6; // c will be 0 (14 & 1)
c = a & (6 == 6); // equivalent to above (c = 0)
c = (a & 6) == 6; // intended: c will be 1 (6 == 6)

The following table sums up all the operators we've seen so far,
from highest to lowest precedence:
Operator Description

() Parentheses

++ --
()

Postfix Increment / Decrement
Function Calls

++ --
+ -

!
~

(type)

Prefix Increment / Decrement
Unary Plus / Minus
Logical NOT
Bitwise NOT
Cast to a specific data type

* / % Multiplication / Division / Modulo

+ - Addition / Subtraction

<< >> Left Shift / Right Shift

< <=
> >=

Smaller than / Smaller than or equal to
Greater than / Greater than or equal to

== != Equality / Inequality

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logical AND

|| Logical OR

=
+= -=

*= /= %=
&= ^= |=
<<= >>=

Assignment
Addition / Subtraction & Assignment
Multiplication / Division / Modulo & Assignment
Bitwise AND / XOR / OR & Assignment
Left Shift / Right Shift & Assignment

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 27

Flow control

For lack of a better name,
I call it the Tao.

It flows through all things,
inside and outside, and returns

to the origin of all things.

-- Tao Te Ching, verse 25

Most useful computer programs do not follow a single line of
execution. Often decisions must be made regarding which actions
should be taken. It is also common for actions to be repeated with
different parameters. Functions can be used to regroup actions
commonly executed together, and a function can be called multiple
times, thus facilitating code reuse. Iteration statements or loops allow
to repeat a block of code multiple times.

A few different types of statements exist in C and eC to control
the program's flow of execution. We already saw one, the return
statement. The return statement's purpose is two fold: it specifies
which value the function shall return as we learned, and it terminates
the function call (or jumps to the end of the function). The return
statement can therefore be used in functions returning no value (of a
void return type), with no argument. However, that usage is
discouraged by the Ecere standards, as one common exit point (at the
end of the function) greatly enhances the function's readability. Having
a single exit point also makes it easier to handle any necessary clean
up or final action necessary prior to exiting the function. Thus ideally in
a function returning a value, a single return statement is required at
the end of the function, with a local variable holding the value to be
returned until the end. However, in some cases such as relatively short
functions, a single return statement would worsen readability rather
than improve it, so this is merely a guideline.

The most classic control statement in programming is the if
statement. We will look at it in details, along with its corresponding
else clauses. The purpose of if is to evaluate whether a specific
condition is true or false. The expression to evaluate immediately
follows the if, surrounded by parentheses. We already covered the
boolean values, comparisons and logical operators in the previous
chapter. They are most useful along with the if statement. Remember
that an implicit conversion to a boolean type is performed for the
expression boolean control statements (such as if) are evaluating, and
therefore a "!= 0" check is not required. A sample evaluation could be:

if(a > 2 && b < 5)

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 28

Again, C and eC are blocks structured languages. Therefore if
doesn't have a matching END IF statement such as in BASIC for
example. Both if and else must be followed by a statement, which can
be a compound statement containing multiple statements. Therefore
the if and else clauses end with the end of the statement or compound
block. Consider the following examples:

if(a > 2 && b < 5)
 printf("this\n");
else
 printf("that\n");

is equivalent to

if(a > 2 && b < 5)
{
 printf("this\n");
 /* More statements could follow, all be
 executed if the condition is true */
}
else
{
 printf("that\n");
 /* More statements could follow, all be
 executed if the condition is false */
}

Often series of conditions must be checked, and if and else find
themselves gathered together. C doesn't have a specific ELSE IF
statement as other languages such as BASIC do. Instead, an else if is
actually a combination of an else and an if. It is written this way:

if(a > 2)
 printf("this\n");
 else if(b < 5)

 printf("that\n");
else
 printf("nothing\n");

and is equivalent to:
if(a > 2)

 printf("this\n");
 else
 {
 if(b < 5)

 printf("that\n");
 else
 printf("nothing\n");

 }

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 29

A common ambiguity with the if / else statements of various
programming languages is also present in C. It is called the "dangling
else". Consider the following:

if(a > 2)
 if(b < 5)
 printf("this\n");

else
 printf("that\n");

The indentation here suggests "that" will only be printed if a is
not greater than 2. In fact, the C grammar dictates that the else here
belongs to the if(b < 5), and is thus equivalent to:

if(a > 2)
{

 if(b < 5)
 printf("this\n");

 else
 printf("that\n");
}

In order to avoid this ambiguity when reading the code, as well
as ensuring our intentions, any if or else statement containing another
if statement should explicitly contain a brackets enclosed compound
statement. So what we intended to write here (again, according to the
way we indented the example) was:

if(a > 2)
{

 if(b < 5)
 printf("this\n");

}
else
 printf("that\n");

The only exception is the particular else if statements as
described earlier, which should also figure at the same indentation
level, with else and if on the same line, The C grammar dictates these
to work like a typical "else if" construct. Any if statement within an else
if construct which is not part of the else if series however, should be
contained within a compound block. Therefore the following is wrong:

if(a > 2)
 printf("this\n");
else if(b < 5)
 if(a > 0)
 printf("that\n");

 else
 printf("nothing");

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 30

It should have been written as:

if(a > 2)
 printf("this\n");
else if(b < 5)
{
 if(a > 0)
 printf("that\n");
}

 else
 printf("nothing");

By now you should have started to realize the importance of
properly indented code. This sums up the if statement, and we will
now take a look at the other C selection statement: switch. The
switch statement is closely related to the else if statement, as it
could be implemented as such. Similarly, a series of else if statements
comparing the same expression for equality to different values can be
(and should be) implemented as a switch statement. Consider this
example:

int a = 2;
 if(a == 1) printf("One");
else if(a == 2) printf("Two");
else if(a == 3) printf("Three");8

The switch statement allows us to specify the expression to be
written and evaluated only once and rewrite it as such:

int a = 2;
switch(a)
{
 case 1: printf("One"); break;
 case 2: printf("Two"); break;
 case 3: printf("Three"); break;
}

Evaluating only once is particularly useful if the expression is
more complex than a single variable or needs to perform work such as
invoking a function call. In the case of the switch statement, the
function will only be called once. With else if statements it would be
called multiple times, unless the function is called before the else if
statements and its return value saved for the purpose of evaluation.

8 Notice that I took the liberty to put each if and else if statement on a single line. One
of the Ecere principles for code readability is to be able to see as much of the code as
possible at once, in order to get a better global picture. Therefore for such short lines
of code, you will often see regrouping like this resulting in fewer lines of code which
improve readability and save space. Especially with the advent of cheaper huge high
resolution wide screen monitors, the 80 console characters limit is obsolete, and
fewer, longer lines are preferred.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 31

The case statement is used only in pair with switch, which is
why it's often referred to as the switch/case statement. The case
statement takes in a single argument which must be constant. Multiple
case statements with the same values within the same switch are not
allowed. Unfortunately, it is not possible to evaluate comparisons other
than equality within a switch statement, as it is in BASIC for example.
One must therefore resort to else if statements to perform evaluations
including greater than or smaller than operators.

The break statement has a particular meaning within a switch
statement, but will also be used with iteration statements. Within a
switch, it simply signifies to stop executing the statements within the
switch. Indeed, if a break is not present, the statements of the
following case statements will be executed as well. This is not obvious
at first, and it is a common source of errors to forget the break
statement. For example:

int a = 2;
switch(a)
{
 case 1: printf("One");
 case 2: printf("Two");
 case 3: printf("Three");
}

This will print both "Two" and "Three". In some cases, this might
be the desired behavior and the break statement is voluntarily omitted
in order to perform a common action for two different values, but one
additional action (performed before the common action) for one of
these two values. Note that the values need not be in ascending order,
but can be listed in whichever way appropriate to the situation.

Now what if none of the cases matches the value? In the above
examples, nothing; none of the case statement within the switch is
executed. However C provides an additional keyword for specifying
what is to happen if no case matches: default. Example:

int a = 4;
switch(a)
{
 case 1: printf("One"); break;
 case 2: printf("Two"); break;
 case 3: printf("Three"); break;
 default: printf("Neither One, Two nor Three");
}

The default statement should always be the very last. Just like
with case, the above case statements will go into the default
statements if the break statements are omitted.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 32

Compound statements can also be used within case statements
in order to define variables. More complex switch statement will look
like this: (take note of the indenting which follows the Ecere standards)

int a = 4;
switch(a)
{
 case 1:
 {

int variable; // Sample declaration
printf("One");
break;

 }
 case 2:
 {

printf("Two");
break;

 }
 case 3:
 {

printf("Three");
break;

 }
 default:
 {

printf("Neither One, Two nor Three");
 }

}

Now that we've seen both selection statements, we'll study the
iteration statements. There are three iteration statements in C: while,
do ... while (a slight variation of while) and for. Each of these also
perform a kind of selection on a boolean value to decide whether or
not to continue iterating. Let's look at the simplest first, while.

int a = 10;
while(a > 0)
 printf("%d\n", a--);

The while statement first checks the boolean status of the
expression to be evaluated, then if it is true executes the statement. It
repeats until the expression is false. The example above will print
numbers 10 to 1 in decreasing order. Notice our use of the postfix
decrement operator. Using the prefix version (--a) would have printed
the numbers 9 to 0. A compound statement can of course also be used
within a while in order to execute multiple statements.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 33

A very slight variation of the while loop is the do ... while. The
only difference is that it does not perform an initial evaluation, and
thus the statement will be executed at least once, regardless of the
value of the expression.

int a = 10;
do
{
 printf("%d\n", a--);
} while(a > 0);

Note the mandatory semicolon at the end of the while clause of
the do ... while statement. This will produce the exact same output
as the previous while statement. However, the following example will
print a single line with "0" whereas the previous while example would
not have printed anything:

int a = 0;
do
{
 printf("%d\n", a--);
} while(a > 0);

We mentioned earlier that the break statement had a different
meaning within a loop. Inside a a while, do ... while or for, break can be
used to immediately jump outside the loop. Infinite loops can then be
meaningful with hope that they will eventually end:

int a = 10;
while(true)
{
 printf("%d\n", a--);
 if(!a) break; // The loop will end when a is 0
}

The break statement only applies to the innermost loop (or
switch) within which it resides. Note that this makes it impossible to
jump out of a loop from within a switch, because the break will simply
end the switch statement. Flag variables must then be set within the
switch, which can later be checked once outside the switch where it is
possible to exit the loop. The same method can be used to break out of
more than one loop at once. The example which follows illustrates such
a situation with one while loop within another. Each loop simply
increments a variable and do not perform anything useful. Both loops
end when the check within the inner loop finds that both a and b are
equal to 5.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 34

bool end = false;
int a = 0, b = 0;
while(a < 10)
{
 int b = 0;
 while(b < 10)
 {
 if(a == 5 && b == 5)

{
 end = true; // Set a flag to exit outer loop
 break; // Break out of inner loop
}

 b++;
 }
 if(end) break; // Break out of outer loop
 a++;
}

All of the loop examples so far iterated the values of variables.
That is a very common occurrence in programming to do so, and a
special construct for this purpose exists in most languages, the for
loop. The C for loop however is more flexible than many other
languages. It consists in three parts (in addition to the the statements
to be repeated): the initialization, the evaluation and the action to be
performed after each iteration (most often an incrementation). Each of
the three parts is an expression, and they are separated by
semicolons. Any of the parts can be omitted (the evaluation defaults to
true). Our first while loop example can be rewritten as such:

int a;
for(a = 10; a > 0; a--)
 printf("%d\n", a);

A classical increasing for loop counting from 1 to 10 would be:

int a;
for(a = 1; a <= 10; a++)
 printf("%d\n", a);

Note that most often if the for loop is to execute something a
number of times, the counter will start at 0 rather than 1, and the
smaller than operator will be used rather than smaller than or equal to:

int a;
for(a = 0; a < 10; a++)
 printf("This will print 10 times.\n");

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 35

An infinite for loop can be written by omitting all parts. It is
equivalent to the while(true) loop.

for(;;)
 printf("This will never end\n");

Note that multiple expressions can be grouped together in a
single expression, separated by commas (,). In this case, the overall
expression evaluates to the last expression. This is particularly useful
within the for loop, for example to initialize and iterate multiple
variables:

int a, b;
for(a = 0, b = 10; a < 10; a++, b++)
 printf("a = %d, b = %d\n", a, b);

As me mentioned earlier, the break statement can also be used
within a for. The counterpart of break also exists: continue. The
continue statement terminates the current iteration, performs the post
iteration action (in the case of a for), evaluates the condition and starts
a new iteration if the condition is true. It can also be used with while
and do ... while loops. The continue statement can be very useful to
skip the remaining of the current iteration and move on to the next.
Consider the following example:

int a;
for(a = 0; a < 10; a++)
{
 if(a == 4) continue;
 printf("a is %d.\n", a);
}

The above will print values 0 to 9, excluding 4.

This concludes this chapter on flow control statements. We are
deliberately skipping over the C goto statement as the Ecere coding
standard considers it bad practice, and most uses of the goto
statement could be written more elegantly using the great flexibility of
the selection and iteration statements we just described. However, eC
does support the goto statement.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 36

Structures

The Master views the parts with compassion,
because he understands the whole.

-- Tao Te Ching, verse 39

The universe has a natural tendency towards self-organization,
of which we are living proof. Our body is made up of organs,
themselves made up of tissues, tissues consisting of arrangements of
cells, each cell having its own components, built with molecules
comprised of atoms.9

Just like a human body, a complex program comes to life
through a hierarchical organization of simpler parts. We've already
learned that eC statements are implemented with CPU instructions,
that they can further be organized into functions, and that variables
are useful to organize memory. CPU instructions are also stored in
memory. Both memory and the execution of instructions are in fact
themselves powered by electric energy.

Up until now we've always dealt with basic data types for data,
a variable holding a single value, and each variable being unrelated to
every other variables. With structures, it is possible to organize data
into more complex data types, allowing to create any hierarchies of
blocks of data which can best represent the information we wish to
manipulate. A block of data organized in such complex types can be
thought of as an object, as it is often mapped to a conception
meaningful in the real world or in a context specific to the application.
Indeed, although many procedural programming languages such as C
do not facilitate support for object oriented programming, structures
provide the building blocks for it and thus make it possible (although
cumbersome) to write object oriented code in these languages.

In the next section we will discuss object oriented programming
in depth, and learn that all eC data types (including the structures we
are about to describe) support object oriented features. For now, we
will focus on the data storing aspect of structures. Nevertheless the
concepts explained in this chapter (which will cover both the standard
C structures and the particularities of the eC language) are the very
foundation for the object oriented constructs taught later on.

9 Atom comes from the Greek atomos, meaning "uncuttable". With the advent of
quantum physics, scientists realized that matter is actually nothing but a form of
energy. Delving deeper, physicists learned that it is impossible for an observer to
carry any experiment without affecting the system being observed, and thus the
duality between observer and observed, or mind (thought) and matter (energy) is
merely a conception of the mind.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 37

Structures in C and eC are defined with the struct keyword
and list of data members which the structured data type will contain.
Each data member is qualified with a data type. eC offers a simpler
way than C to declare named structured data types which is more in-
line with modern programming languages. Consider the following
declaration:

struct InventoryItem
{
 int code;
 float price;
};

An InventoryItem data type is declared, containing both a code
which is to be stored as an integer, and a price which is to be stored as
a floating point number. This new data type will take as much memory
as is required for holding all the data.10 An inventory item variable can
then be declared as such:

InventoryItem item;

Each data member can be accessed individually through the
variable identifier and the member operator '.' followed by the
member identifier:

item.code = 1234;
item.price = 45.0f;

Structure variables can also be initialized within their
declaration through list initializers specified within curly brackets:

InventoryItem item = { 1234, 45.0f };

List initializers are assigned to the data members according to
the order of the data member declarations. eC offers another way to
write the above which will be referred to as the instantiation syntax. An
instance (or object) is an object oriented term to refer to a single
occurrence of a specific data type (we will cover the subject in a lot
more detail in the next section). In the above example, item is an
instance of the InventoryItem structure type. As you can see in the
following example, the eC instantiation syntax is greatly inspired from
C's list initializers:

InventoryItem item { 1234, 45.0f };

10 Depending on the padding necessary to align data members, this might be more than
the sum of the size of the data type of all members.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 38

In addition to not requiring the = sign, the instantiation syntax
present a few advantages. Any or all data members can be omitted,
and any data member can be explicitly set through its name11:

// code will be 0
InventoryItem item1 { price = 45.0f };
// price will be 0
InventoryItem item2 { code = 1234 };
// both code and price will be 0
InventoryItem item3 { };

Note that using the instantiation syntax guarantees the storage
for the structured to be initialized (by default to 0) and thus no
member will contain stray garbage data. If neither using the
instantiation syntax nor assigning a list initializer, all data members will
contain uninitialized memory.

Just like C list initializers, the instantiation syntax follows the
data member declaration orders. However whenever a member is
specified by name, the next unnamed member to be initialized is reset
to the data member following that named initialized member. For
example:

struct InventoryItem
{
 int code;
 float price;
 float cost;
};
// 20.0f will be assigned to the cost
InventoryItem item { price = 45.0f, 20.0f };

This way of declaring a structure type is specific to eC and only
allowed at the global level (outside of any function). Structures are a
delicate point of the C compatibility of eC. Indeed, by design eC makes
every possible effort to support this simpler way of declaring named
structure data types, while at the same time maintaining compatibility
with standard C structure declarations. The following discussion will
attempt to clarify the details pertaining to the use of both, and is
primarily intended for previous C programmers and for developers
intending to use an external library through the include files (headers)
of a C application programming interface (API). New developers can
feel free to skim over the next discussion (about a page and a half)
rapidly and stick to the eC syntax. First we will study how structures
work in standard C, and how eC accommodates both syntaxes.

11 More recent C standards have a similar functionality whereas the "[.member name] =
value" syntax can be used within a list initializer to set a specific data member. That
syntax is not supported in eC and can be argued to be not as elegant as the eC
instantiation syntax which does not require the dot.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 39

In C, a struct declaration is actually a data type specifier, just
like int. Therefore a structure variable can be declared as such:

struct { int code; float price; } item = { 1234, 45.0f };

This is valid both at the global level and for local variables
inside functions (in eC as well). As you can see, the struct keyword
followed by the data member declarations acts just like a basic data
type, and can declare one or more variables, each of which having an
optional list initializer. Because a specific structure is typically used
more than once, C offers a way to name each structure (with an
identifier immediately following the struct keyword) so that the list of
data members need not be repeated every single time. This however
declares a structure, only visible at the scope where it is declared,
which cannot be used by itself as a data type. In order to declare a
variable, the struct keyword must be used again, like such:

struct InventoryItem
{
 int code;
 float price;
};
struct InventoryItem item2 = { 5678, 55.0f };

Note that declarators and initializers can still be used along with
named structures. To further facilitate things, C also provides the
typedef keyword which enables the creation of new data types.
typedef maps any existing data type to a new identifier, which can
then be used by itself in declarations as a data type. It can be used for
example with basic data types:

typedef int MyInt;
MyInt a = 5;

It can also be used with structures, so that our InventoryItem
example can be rewritten as:

struct InventoryItem
{
 int code;
 float price;
};
typedef struct InventoryItem InventoryItem;

InventoryItem item1 = { 1234, 45.0f };

As you can see, the same identifier can be used for the type
and the structure, as both are different classes of identifiers (structures
and types).

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 40

Alternatively, the structure can be declared within the typedef:

typedef struct
{
 int code;
 float price;
} InventoryItem;

InventoryItem item1 = { 1234, 45.0f };

Note that InventoryItem here is the name of the type, not a
struct declarator. A structure identifier could also be used along with
a typedef, so that it is possible to declare variables as "struct
InventoryItem", which would otherwise not be recognized.

typedef struct InventoryItem
{
 int code;
 float price;
} InventoryItem;

InventoryItem item1;
struct InventoryItem item2;

All these C constructs can also be used within eC code, but note
that a global named struct is both the eC syntax and a valid C syntax.
As such, it can be used both ways. However, if a type with the same
name is declared using typedef, it cannot be used as an eC struct
(for example, the instantiation syntax is not available with the last
three examples). The following is valid eC code without requiring a
typedef:

struct InventoryItem
{
 int code;
 float price;
};

InventoryItem item1 = { 1234, 45.0f };
struct InventoryItem item2 = { 5678, 55.0f };
InventoryItem item3 { 9012, 65.0f };

Another particularity of the eC struct is that function
parameters declared with its syntax are automatically passed by
reference. This means that when a function modifies the contents of a
struct parameter, it is actually modifying the structure variable
passed by the caller. This also avoids putting the entire contents of
structures on the stack, as a C structure would naturally do unless
pointers are used. Consider the following example:

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 41

struct InventoryItem
{
 int code;
 float price;
};

void FillItem(InventoryItem item)
{
 item.code = 1234;
 item.price = 45.0f;
}

void Test()
{
 InventoryItem item1 { };
 FillItem(item1);
 // item1 now contains 1234 and 45.0f
}

This is a particularly useful way of returning multiple values
from a function through its parameters (as does FillItem), since a
function can only return a single value from its return data type.

If such a behavior is not desired, it is possible to declare a
structure parameter using the C syntax as such:

void DontModifyItem(struct InventoryItem item)
{
 // This only modifies a local copy
 item.code = 1234;
 item.price = 45.0f;
}

void Test()
{
 InventoryItem item1 { };
 DontModifyItem(item1);
 // item1 still contain zero values
}

eC also supports anonymous instantiations. Whereas a named
instantiation is a declaration, an anonymous instantiation is an
expression, and as such can be used wherever an expression is
required, such as an argument to a function:

void Test()
{
 DontModifyItem(InventoryItem { 1234, 45.0f });
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 42

When a specific data type is expected, such as in a function
argument, the name of the matching structure can be omitted,
allowing for more elegant code:

void PrintItem(InventoryItem item)
{
 printf("Code: %d, Price: %.2f\n", item.code,

item.price);
}

void Test()
{
 PrintItem({ 1234, 45.0f });
}

Whether using the C or eC kind, structures can also be nested
within each other. For regular data members, the inner structure is
simply the data type of the member, and inner members are used
through a succession of dots and member identifiers. The '.' member
operator's associativity is left to right, and it has the same precedence
as the postfix increment/decrement and the function call parentheses.

struct Cost
{
 int dollars; // We decide to use two integers to
 int cents; // represent the dollars and cents
};

struct InventoryItem
{
 int code;
 Cost price;
};

void Test()
{
 // We can use the . inside the instantiation
 InventoryItem item { price.dollars = 5 };

 // Next line is same as: (item.price).cents = 10;
 item.price.cents = 10;
}

It is additionally possible to have anonymous structures within a
structure, in which case the extra member can simply be skipped, and
the internal members can be accessed directly through the dot
operator, as the following sample demonstrates.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 43

struct InventoryItem
{
 int code;
 struct
 {
 int dollars;
 int cents;
 };
};
void Test()
{
 InventoryItem item { dollars = 5 };
 item.cents = 10;
}

Structures have very close relatives called unions. In all aspects
a union works exactly like a struct (it also supports eC syntax), except
that all its data members start at the same memory emplacement. It is
particularly useful for versatile data types which could hold different
types of objects (often identified with a type identifier variable), or for
accessing the same data in different ways. The size of a union is the
size necessary to hold the largest of its data members. The use of
unions lies somewhat in advanced programming topics, so for now we
will simply present an example of its syntax:

union VersatileType
{
 int value;
 InventoryItem item;
};

void Test()
{
 VersatileType data { value = 10 };

 // 10 has been assigned to value, but the
 // InventoryItem's code member which maps to the
 // same address in memory now also contains 10.
 data.item.dollars = 20;
}

We've talked about the size of a structure a few times by now;
it would be useful to know that the sizeof operator exists which
returns the size (in number of bytes, always a constant expression) of
any data type, computed at compile time. It is also possible to use the
sizeof operator with a variable, in which case it returns the storage
size for that variable's data type. Because of particularities with the
sizeof operator's precedence and associativity, following the Ecere
coding standards requires its argument to always be enclosed within
parentheses, such as: sizeof(VersatileType).

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 44

Enumerations
In emptiness, there is no form,

no feeling, thought, activity, consciousness.
No eye, ear, nose, tongue, body, and intellect consciousness.

No form, sound, smell, taste, touch and phenomena.
No realm of eye consciousness

till no realm of intellect consciousness.
No ignorance and no termination of ignorance,

till no age and death and no termination of age and death.

-- The Prajñaparamita Hrdaya Sutram (Heart Sutra)

It is common for our minds to conceptualize nature in a dualistic
manner, e.g. male, female; light, dark; hot, cold. Each of these
however are but two aspects of an interrelationship, whereas one
aspect would not be meaningful without the existence of its opposite.
The symbol of the Tao illustrates very well the unity of the universe
(represented by the circle) through duality, with its interdependent yin
(passive, dark, female...) and yang (active, light, male...) aspects.

Thus a temperature could be thought of as either hot or cold,
sex could be categorized as being male or female, and a generic
aspect could be either yin or yang. We've already seen that a boolean
value can be true or false. These are all examples of binary
enumerations, which can be one of two possible values. It is also
possible to have enumerations with a greater number of possible
values. For example Chinese philosophy sees the entire universe as
being made of five elements (better translated as phases, not to be
confused with chemical elements): wood (木), fire (火), earth (土), metal
(金) and water (水).

As in C, the eC keyword to define an enumeration is enum. The
syntax is rather simple:

enum Element { wood, fire, earth, metal, water };

Note that following the Ecere coding standards requires all
values to start with a lowercase, whereas the enumeration name (like
all other data types) starts with an uppercase. Element variables can
then be declared and assigned any of the possible values:

Element element1 = water, element2 = earth;

By default, enumerations represent a value of the int data
type. In eC only, it is possible to override which data type it will use
(which can be any integral data type), by following the enumeration
name with a colon (:) and the desired type:

enum Element : byte { wood, fire, earth, metal, water };

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 45

It is also possible to assign a specific value to any of the
enumeration values. If none is assigned, the first value starts at 0, and
the following ones are incremented by one, in the order they are
declared. As an example, say we wanted our elements to start at 1
rather than 0, we could simply do:

enum Element { wood = 1, fire, earth, metal, water };

And fire, earth, metal and water would respectively be assigned
2, 3, 4 and 5. A particularity of the eC enumerations is that they are
context sensitive. We've briefly mentioned earlier that the true and
false identifiers are only valid when used with a bool data type.
Indeed, the values for any specific enumerations are only recognized
when that enumeration is the expected data type of an expression.
This differs from standard C where all value identifiers are available in
the entire scope of the enumerations.

The advantage of this is that multiple enumerations can use the
same identifier without clashing with each other. Say we had another
enumeration using the earth value identifier:

enum Planet
{
 mercury, venus, earth, mars, jupiter, saturn, uranus,
 neptune
};

In standard C these two enumerations could not coexist within
the same scope. Furthermore, note that earth has a value of 3 in our
previous Elements example starting at 1, and a value of 2 in our Planet
enumeration. To make them coexist, we would need to prefix all values
by something meaningful to differentiate the two values, say
elementEarth and planetEarth. But in eC that is not required:

Planet planet = earth; // This will be 2
Element element = earth; // This will be 3

However the following is not recognized:

int a = earth; // error: Unresolved identifier earth

Simply as an example, the built in eC bool enumeration would
be declared as such:

enum bool { false, true };

Just like structures, eC has a slightly different, simpler syntax
than C for enumerations, but still fully supports the C syntax. We will
now take a look a the C syntax for those who might find it useful.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 46

C's enumeration syntax is similar to its approach to structures,
in that it doesn't define a new data type by itself. The identifier naming
the enumeration indeed merely defines a new enumeration. As for
structures, the enum keyword must be used along with the
enumeration name to declare a variable. Like structures also, the
enumeration itself can be anonymous and be used as a data type.

enum Element element = earth;
enum { no, yes } answer = yes;

The common usage however is with a typedef, either in a
separate declaration, or most often together with the enumeration.

typedef enum Element Element;
typedef enum
{
 wood, fire, earth, metal, water
} Element;

An Element enumeration type will then be available so that the
following code is valid:

Element element = earth;

Just like structures, the eC syntax for enumerations is only
available at the global level, whereas the C syntax is available within
any compound statements. Remember that using the C syntax value
identifiers are available within the entire scope of the enumeration,
whereas using the eC syntax identifiers are available according to the
expression's expected data type.

An additional feature of eC is the possibility to obtain the size of
an enumeration (the largest value + 1), as a compile-time constant
value. Here is an example of the syntax with our Planet enumeration:

int size = Planet::enumSize;

 A last feature is the ability to derive one enumeration from
another, adding new possible values. It is done using the syntax we
saw earlier for selecting the enumeration's data type, choosing the
base enumeration as the data type:

enum PlanetOrDwarfPlanet : Planet
{
 ceres, pluto, eris // ceres will be 8, and so on
};
PlanetOrDwarfPlanet planet1 = mercury;
PlanetOrDwarfPlanet planet2 = pluto;

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 47

Arrays, pointers and memory
Music or the smell of good cooking
may make people stop and enjoy.

But words that point to the Tao
seem monotonous and without flavor.

When you look for it, there is nothing to see.
When you listen for it, there is nothing to hear.

When you use it, it is inexhaustible.

-- Tao Te Ching, verse 35

Pointers are one of the most difficult concept to grasp in C
programming. Indeed, many modern programming languages opted
not to provide direct access to memory, for various reasons such as
safety and simplicity. This of course was not an option in the design of
eC, which aims for full compatibility with the C language, and strives to
achieve maximum runtime performance. However, pointers do add an
extra level of complexity, which can be quite a burden in writing simple
object oriented application which do not really require a thorough
understanding of memory access.

Fortunately, the middle-way approach of eC makes pointers
totally transparent until they are truly needed. Thus it is not required
to be familiar with pointers to write useful object oriented code. The
topic is still presented in this last chapter of the basics of programming
in eC, because it does not belong to object oriented programming and
is the last topic to be covered which also applies to the C programming
language. By the end of this chapter, you will have completed an in-
depth introduction to C programming.

Although it is recommended to read it through at least once
before moving on to the next section, don't worry if you do not feel you
are mastering the subject just yet. Pointers will not be used in the book
until we cover text strings and file access in later sections. Coming
back to this chapter after having written a bit of code and
understanding the purpose of pointers will be most useful.

Before teaching pointers, this chapter will explain arrays which
are closely related to pointers. We will also discuss memory allocation
and addressing.

In C and eC, an array allows to have more than one instance of
a data type, allocated in contiguous memory, accessible through an
array variable and a numeric index. Square brackets are used both to
declare the number of elements an array should have, and to specify
the index to be used. Indexes go from 0 to the number of elements - 1.

int array[10]; // Declare an array of 10 int elements
array[0] = 1; // Set the first element (index 0) to 1

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 48

Reading from or writing to an index beyond the array's declared
size will be accessing memory not belonging to the array and in most
cases will result in an undesired behavior, often an illegal memory
operation which might terminate the application unexpectedly. For
example, the following is wrong:

int array[10], a;

array[-1] = 1; // writes to memory before array
array[10] = 1; // writes to memory after array

a = array[-1]; // reads from memory before array
a = array[10]; // reads from memory after array

Like normal variables, arrays are not initialized by default
(unless they are part of another data type being initialized, such as a
structure being instantiated). It is possible to initialize them with a list
initializer, whereas each element in the list is associated with an
element in the array:

int array[10] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };

The first two elements of the array (index 0 and 1) will contain
1, and the following values are assigned to indexes 2 and on, the last
element (index 9) being assigned 55. If elements are omitted in the
initializer list, they will be assigned to 0. For example:

int array[10] = { 1 };

The first element (index 0) will be 1 and all other nine elements
will be initialized to 0. It is also possible to declare arrays of structures:

struct InventoryItem
{
 int code;
 float price;
};
InventoryItem items[3] =
{
 { 1234, 45.0f },
 { 5678, 55.0f },
 { 9012, 60.0f }
};
void PrintItem(int i)
{
 printf("Code: %d, Price: %.2f\n",

items[i].code, items[i].price);
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 49

Note how the initialization of items is a list initializer themselves
containing a list initializer for each item in the array. Also observe that
a variable can be used to index an array; any integral type can be
used. An array declaration however requires the size specified to be an
integer constant. The precedence and associativity for the []
indexing operator is the same as the function call () or the . to
access structures' members. Notice how it is used alongside the .
operator to access the code and price member of the InventoryItem
structure elements.

The size in bytes of an array is equal to the product of its
number of elements by the size of the data type of each element. The
sizeof operator can be used with the array variable to obtain it. Thus
in the preceding example, sizeof(items) is equivalent to
sizeof(InventoryItem) * 3.

It is also possible to declare multi-dimensional arrays. So far we
demonstrated 1-dimension array (with a single index). Although it
could be decided arbitrarily which index represents what, the last
index typically represents columns, whereas the next to last represents
rows, which matches the way the initializer list can be organized.
Although more difficult to visualize, it is possible to have arrays with
more dimensions than 2 or 3. Therefore a 2 columns by 3 rows array
could be used as such:

int array[3][2] =
{
 { 1, 2 },
 { 3, 4 },
 { 5, 6 }
};

void PrintArray()
{
 int j; // row counter
 for(j = 0; j < 3; j++)
 {

int i; // column counter
for(i = 0; i < 2; i++)
 printf("%d ", array[j][i]);
printf("\n");

 }
}

When declaring array parameters of a function, the number of
elements for each dimension must be specified, with the highest level
(the leftmost brackets, rows in our 2 dimensions example) being
optional. Therefore for single dimension arrays it is not necessary to
specify any size. We could rewrite our PrintArray function as such:

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 50

void PrintArray(int a[][2], int nRows)
{
 int j; // row counter
 for(j = 0; j < nRows; j++)
 {

int i; // column counter
for(i = 0; i < 2; i++)
 printf("%d ", a[j][i]);
printf("\n");

 }
}

It would then be suited for printing any two-dimensional integer
arrays with two columns, regardless of the number of rows (which we
are now passing as a parameter along with the array to be printed). To
print our array above, we sould simply invoke it as such:

PrintArray(array, 3);

It is also possible to omit the highest level size when declaring
an array if it has an initializer list, in which case the number of
elements in the initializer list is used to figure out the size:

int array[] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };

Here the implied number of elements is 10, and it is thus
equivalent to declaring as int array[10].

Like all the data types we have seen so far, the memory for the
elements of an array variable is either allocated as part of another
allocation if it is a member of another data type (such as a structure),
in a special block of memory available throughout the program's
existence if they are global variable, or on the stack, if it is a local
variable (inside a function).

The stack is special memory construct which ensures the
variables for a function will remain alive as long as we are within that
function or within a deeper function called from there. The variables for
that function will cease to exist as soon as the function exits, and the
memory will be made available again for future function calls. There is
a single stack for each thread of execution in a C program (until we
cover multi-threading, we are dealing with a single thread).

Arrays are allocated statically, meaning the size of an array is
specified at declaration (compile) time. The size of an array cannot be
modified after it has been declared. We will see later how to
dynamically allocate memory.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 51

In eC, arrays share a special connection with enumerations. We
already mentioned it was possible to obtain the size of an
enumeration. It could be used to specify the size of an array as such:

double planetsRadii[Planet::enumSize];

However, because eC enumerations are context sensitive, in
the case of array indices which always have an integer expected type,
the enumeration name must awkwardly precede every value identifier:

planetsRadii[Planet::jupiter] = 71492;

 To solve this issue, eC supports associating a particular array
directly with an enumeration, both setting the size and the expected
data type of the index appropriately for the enumeration. The above
can thus be rewritten as:

double planetsRadii[Planet];
planetsRadii[jupiter] = 71492;

In this case, the array will contain 8 elements (0 through 7, or
mercury through neptune).

Arrays are a very good introduction to pointers, for the simple
reason that array variables are in fact pointers. Indeed, an array
variable points to the start of the memory block occupied by the array
elements. The only particularity which differentiates them from
pointers declared as such is that array variables always point to the
same array and cannot be reassigned to point to somewhere else.

Using the identifier of an array variable without the indexing
operators, we are accessing the pointer to the array, which is in fact
itself a variable containing the address (in number of bytes from the
beginning of system memory) where the array's memory block starts.
The size of pointer variables is dependent on the system architecture,
and could for example be 32 or 64 bits. If we try printing the value of
array without indexing, we can see where the array is allocated in
memory (we're printing it as an hexadecimal address):

int array[10] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
printf("array is allocated at address %X\n", array);

We've already briefly mention that the * symbol is used to
declare pointers while introducing character strings. Note that we can
assign a pointer to whichever address we please. A pointer pointing to
a 0 address is said to be a null pointer. The null identifier is available in
eC and should be used to initialize a pointer to a null address:

int * pointer = null;

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 52

Now let's declare a pointer variable pointing to the array:

int * pointer = array;

Both array and pointer now point to the same block of ten
integers, which we have initialized with the above series. The index
operator we've seen is one way of dereferencing, or obtaining the
value at a specified address contained in a pointer or array variable.
The same indexing syntax is available with pointer types as well:

printf("The fifth element is %d\n", pointer[4]);

Another way of dereferencing exists, more typical to pointer. It
uses the * dereferencing operator and accesses the value of the
pointer's data type at the memory location exactly where the address
contained in the pointer variable points:

printf("The value at pointer is %d\n", *pointer);

It is in all ways equivalent to using the 0 index as in
pointer[0], and is equally available to pointer and array variables.
Both syntaxes can also be used to access elements beyond the first,
through pointer arithmetics. Pointer types support some arithmetic
operations (with restrictions). An important concept to remember is
that any operation on a pointer is performed according to its data type.
Therefore an addition of 1 to a pointer does not increment the pointer
by a single byte, but by the size of its data type. Therefore, the
following are equivalent:

printf("The fifth element is %d\n", pointer[4]);
printf("The fifth element is %d\n", *(pointer + 4));

We can further demonstrate this by printing the addresses:

printf("Address in pointer is %X\n", pointer);
printf("Address in pointer + 4 is %X\n", pointer+4);

A sample run produced the following output:

Address in pointer is 402000
Address in pointer + 4 is 402010

As you can see, the second address is higher by 16 bytes (10 in
hexadecimal), our 4 times the size of the int data type (4 bytes),
which the pointer is declared to point to. Pointers can also be declared
without specifying what data type they are pointing to, by specifying a
void data type, like such:

void * pointer;

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 53

void pointers as they are commonly called do not support any
arithmetic operations and must first be casted to pointers to a specific
data type before performing any arithmetic, indexing or dereferencing
operation with them:

void * pointer;
pointer + 4; // invalid
(byte *)pointer + 4; // points 4 bytes further

The opposite of the dereferencing operator is the referencing
operator, denoted by the symbol &. It returns the address of its
argument. It can be used to obtain the address of any l-value
expression, such as a variable, and the resulting expression is a
pointer to the memory where that l-value is stored:

int a;
int * pointer;
pointer = &a; // pointer now points to the a variable
*pointer = 4; // variable a now has value 4

It is also possible to obtain the address of a specific element of
an array. For example:

int array[10] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
int * pointer = &array[2];
printf("The third element is %d\n", *pointer);

Note that the following are two completely equivalent ways of
obtaining the address of the first element of an array:

int * pointer = array;
int * pointer = &array[0];

Pointers can also be used to receive a single dimension array of
an arbitrary size as a parameter:

void PrintArray(int * array)

Also, observe how the following are equivalent:

int a;
a = 10; // Assign 10 to a
*(&a) = 10; // Stores 10 at the address of a

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 54

A common usage of pointers is to pass variables by reference to
a function. This allows a function to return values in another way than
its return type. It also allows for both reading from and writing to the
function's arguments. We could write a function taking two arguments,
adding the second number to the first one as an example. The
argument to be modified will be passed by reference, we will thus
declare it as a pointer:

void AddTo(int * a, int b)
{
 *a += b;
}

A sample usage would be:

int number1 = 10;
AddTo(&number1, 5);

Following that call, number1 will hold the value 15. Note that we
could not write:

AddTo(&5, number1);

That is because 5 is not an l-value, it doesn't have any address
and thus cannot be assigned a value; it cannot be passed by reference.
Note that the precedence of * is lower than that of the . member
access operator and the indexing [] operators. When using pointers
with structures, this necessitates a somewhat cumbersome syntax:
(*pointer).member. A special notation exists to facilitate dealing
with structures: pointer->member. It is heavily used in both C as well
as in C++, in which it has a very important connotation with pointers.
We could rewrite our earlier example above as:

struct InventoryItem
{
 int code;
 float price;
};
InventoryItem items[3] =
{
 { 1234, 45.0f },
 { 5678, 55.0f },
 { 9012, 60.0f }
};
void PrintItem(InventoryItem * item)
{
 printf("Code: %d, Price: %.2f\n",

item->code, item->price);
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 55

We can then call PrintItem with a reference to a specific
element of our InventoryItem array writing:

PrintItem(&items[1]);

However, eC makes it possible to pass structures by reference
without explicitly using pointers, as we saw earlier in the chapter about
structures. The -> operator in eC is thus rarely needed in practice. The
above function and function call could be written as:

void PrintItem(InventoryItem item)
{
 printf("Code: %d, Price: %.2f\n",

item.code, item.price);
}

PrintItem(items[1]);

It might be useful to know that item is in fact a pointer, and an
address could be passed to the PrintItem function. We can also add a
check to PrintItem to check the non-null status of item such as:

if(item != null)

Note that this particular case (structures automatically passed
by reference) is the only exception when the != null is required.
Pointers declared as such do not require the != null and the Ecere
standards discourages including it, preferring the shorter syntax:

if(item)

So far, we've always dealt with memory allocated statically in
variables or arrays by the programming language, either on the stack
or at the global level. We've seen how we can assign that preallocated
memory to pointers. A crucial concept to remember when doing so is
that although we are free to assign whichever address to a pointer, the
responsibility of ensuring that the memory it points to is valid lies
entirely with the programmer. This is why using pointers is an
advanced programming topic associated with a certain level of
complexity. For example, if we make a pointer declared globally point
to a local variable inside a function, when that function exits, the
pointer no longer point to that variable which does not exist anymore.
Writing to or reading from that pointer write or read to somewhere else
in memory and cause undesired behaviors. The following example
illustrates this unwanted situation:

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 56

int * pointer;
void Function1()
{
 int a;
 pointer = &a; // Make pointer point to local a
}
void Function2()
{
 Function1();
 // Function1 exited, a no longer exists
 *pointer = 10; // Where does 10 go?
}

It is also possible to allocate memory dynamically, and assign a
whole new block of memory to a pointer. However great care must be
used with dynamic memory, since it does not have a defined scope.
Allocated memory must thus be freed manually when it is no longer
required. Not doing so will result in a memory leak. Memory leaks are a
major problem if they are of a large size or within a recurring
operation, as allocated memory is no longer available for allocation.
They may eventually result in the system running out of memory. The
pool of memory for dynamic allocation is called the heap. Large chunks
of memory are ideally allocated on the heap. Fortunately, eC provides
some mechanisms to ease keeping track of dynamic memory allocated
through its object oriented constructs. For now, we will cover how to
allocate and free memory of any basic or structure data type. Every
allocation should be matched with an eventual deallocation.

The new eC operator can be used to allocate dynamic memory.
It is followed by a data type and the number of elements of that data
type (enclosed within square brackets) to allocate. Let's first try to
allocate a dynamic array of ten integers just like our initial statically
allocated array:

int * pointer = new int[10];

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 57

We can then use the pointer for read and write operations. Let's
store some values in it:

pointer[0] = 1;
pointer[1] = 1;
pointer[2] = 3;

As you can see dynamic memory allocation does not support
list initializers. Alternatively, the new0 operator exists which will
initialize all allocated memory to 0. We could facilitate our initialization
task here by storing the initialization data in a static array and then
copying it over to the dynamic array. A C function exists to perform
memory copy operations: memcpy. Its prototype is as follows:

void * memcpy(void * destination, void * source, uint size)

We could then fill in our dynamic array like this:

int array[10] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
int * pointer = new int[10];
memcpy(pointer, array, sizeof(array));

Another C memory manipulation function allows for safely
moving a block of memory when the source and destination can
potentially overlap. It is simply mentioned here with its (very similar)
prototype:

void * memmove(void *destination, void *source, uint size)

A last C memory function we will mention is memset, which
allows to fill every byte of the specified memory area to a single byte
value:

void memset(void * area, byte value, uint count)

It could be used to clear the memory to 0 after it has been
allocated, rather than using the new0 operator as such:

int * pointer = new int[10];
memset(pointer, 0, sizeof(int) * 10);

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 58

Note that the use of a sizeof with a pointer is the size of the
pointer variable, not of the memory it points to (which can not be
known by the compiler, since pointers are dynamic). This is why we
explicitly specify the size of ten integers rather than writing
sizeof(pointer).

 When the memory is no longer needed, it must be freed with
the delete operator by simply writing:

delete pointer;

The delete operator will also clear the value of pointer so that
it becomes a null pointer (it will be set to a value of 0). A last memory
operator exists which allows for resizing previously allocating memory
without losing the data fitting within both the range of both the
previous and new memory block. Memory reallocation is performed
with renew. Reallocation can result in either the memory block to
remain at the same address, or to be allocated at a completely
separate location. The following example demonstrate a usage of the
renew operator:

int array[10] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
// First allocate only enough room for 5 numbers
int * pointer = new int[5];
// Fill in first 5 numbers
memcpy(pointer, array, 5 * sizeof(int));

// Now we want to expand to hold 10 integers
// pointer is being assigned the new memory address
pointer = renew pointer int[10];

// The first 5 numbers are still properly initialized
// Fill in the last 5 numbers
memcpy(pointer + 5, array + 5, 5 * sizeof(int));

delete pointer;

A renew0 counterpart to renew exists which will clear to 0
only the new parts of a memory block.

It is naturally possible to have more than one level of pointers.
Multidimensional arrays can be implemented as such. Note however
that such an implementation does not store the entire array as
contiguous memory, but rather as an array of pointers, each pointing
to a separate array of values (or pointers if more than 2 dimensions).
These constructs are not compatible with statically declared arrays and
should not be mixed together. We will conclude this section with an
example of such an array using multiple levels of indirections.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 59

int ** AllocateArray(int nRows, int nColumns)
{
 int j;
 int ** array = new int *[nRows];
 for(j = 0; j < nRows; j++)

array[j] = new0 int[nColumns];
 return array;
}
void FreeArray(int ** array, int nRows)
{
 int j;
 for(j = 0; j < nRows; j++)

delete array[j];
 delete array;
}
void PrintArray(int **array, int nRows, int nColumns)
{
 int j; // row counter
 for(j = 0; j < nRows; j++)
 {

int i; // column counter
for(i = 0; i < nColumns; i++)
 printf("%d ", array[j][i]);
printf("\n");

 }
}
class ArrayApp : Application
{
 void Main()
 {

int ** array = AllocateArray(3, 2);
array[0][0] = 1;
array[0][1] = 1;
array[1][0] = 2;
array[1][1] = 3;
PrintArray(array, 3, 2);
FreeArray(array, 3);

 }
}

Notice how the same indexing syntax as with static array can
be used to access the array elements, but the allocation and
deallocation is much more complicated. Also observe that the number
of rows must be known to individually deallocate each row of the array.

Further in the book, we will learn about using object oriented
classes included with the Ecere SDK to facilitate the use of dynamic
arrays.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 60

Just like data is stored in variables at a specific address,
instructions making up functions are also stored in memory, and thus
functions have addresses as well. Storing the addresses of functions is
very useful for calling an arbitrary function from a single call in the
code. One very common application in procedural programming is
callback functions, whereas a function can be passed across an API as
an argument and called back in the middle of another process to let
the API user perform any work he desires. C has a particularly
convoluted syntax for defining pointers to functions. We will
nonetheless try to make some sense out of it, but be relieved that with
the object oriented paradigm, callback functions are usually replaced
with virtual methods and there should be very few requirements for
declaring function pointers in eC. Consider this very simple function:

int AddTwoNumbers(int a, int b)
{
 return a + b;
}

We can declare a pointer to such a function as such:

int (*addTwoNumbersPtr)(int a,int b) = AddTwoNumbers;

Note how the identifier for the pointer being declared
(addTwoNumbersPtr) figures where the function name would normally
be, preceded by the familiar asterisk indicating we're declaring a
pointer and enclosed in parentheses. Although an initializer was used
inside the declaration, it is optional and the pointer could be assigned
a value later on. Calling a function pointer has the exact same syntax
as a call to a regular function:

addTwoNumbersPtr(10, 20);

Because of the confusion often associated with such pointer
declarations, it is commonplace to define a typedef for function
pointers. The actual pointer declaration then looks much more familiar.
Using a typedef to achieve the same as above would look like this:

typedef int (*AddTwoNumbersPtr)(int a, int b);
AddTwoNumbersPtr addTwoNumbersPtr = AddTwoNumbers;

Finally, a cast operation includes no identifier following the
asterisk. The following example calls the function AddTwoNumbers by
casting a void pointer containing its address:

void * pointer = AddTwoNumbers;
((int (*)(int a, int b))pointer)(10, 20);
// Same as: (using typedef)
((AddTwoNumbersPtr)pointer)(10, 20);

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 61

Section 2

Object Oriented
Programming with eC

Classes, methods and instances
Inheritance
Polymorphism and virtual methods
Properties
Encapsulation and access control
Importing and working with multiple modules
Name Spaces
Units and conversion properties
Bit collection classes

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 62

Classes, methods and instances
By emptiness of self-aspect or self-character,

therefore, is meant that each particular object
has no permanent and irreducible

characteristics to be known as its own.

-- D.T. Suzuki

Designing software in terms of objects can greatly improve the
maintainability and expandability of applications. Furthermore, if
properly used, it can lay out an efficient development plan and speed
up the entire engineering process.

In the previous section, we've learned how to organize blocks of
data into structured data types. We have also covered how one
occurrence of any data type is an instance of that data type and seen
how to use eC's instantiation with structure data types.

We will now learn how to bring our objects to life by endowing
them with methods. We will also learn how eC considers various kinds
of data types to be classes (and to a certain extent, all data types), the
structures defined with the struct keyword being only one kind
among others.

A method describes how to perform a certain action with any
instance (object) of a specific class. Therefore a method is
implemented as a function belonging to a specific class. Methods have
an implied parameter (called the this object) representing the object
on which the method was called.

The this object can be referenced explicitly through the this
keyword, but it can be omitted when accessing members of the class
(either data members, methods or properties) because all identifiers
are first matched against them, as if prefixed by "this.". However, if a
local variable or function parameter of the same name exists, it
becomes necessary to explicitly write the "this." to differentiate
members from local definitions (the latter having precedence). Here is
a rewrite of an earlier structure example using methods:

struct InventoryItem
{
 int code;
 float price;

 void Print()
 {
 printf("Code: %d, Price: %.2f\n", code, price);
 }
};

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 63

Notice how we no longer require Print to take a parameter, as
the item to be printed is the this object. We also renamed our
function PrintItem from last section to simply Print, as Item is
implied from the class to which the method belongs. We can access
the code and price data members of the InventoryItem directly, but
they could also be accessed as "this.code" and "this.price".
Method definitions can figure within a structure just like data member
declarations. Observe how the Print function and it's body's compound
block are indented an additional 3 spaces to the right compared to a
regular function, to be in line with the data members declarations.
Let's now look at an example of how to call that Print method:

InventoryItem item { 1234, 45.0f };
item.Print();

This declared an instance of the InventoryItem class to be
referred to by the identifier item through the instantiation syntax12.
The Print method is then called on item. Methods, just like structure
data members, are members and are thus accessed through the '.'
member access operator. Following precedence and associativity rules,
item.Print is the expression being called through the () call operator.
Just like with data members, the "this." is not necessary when calling
another method of the same class from within a class method. Method
calls are equally valid on anonymous instantiations, so that the
following would work:

InventoryItem { 1234, 45.0f }.Print();

Our use of structures so far has been confined to their scope, as
they are statically allocated. It is possible to allocate them dynamically,
as we've seen the new operator accepts any data type. However, doing
so requires using pointers and their related complexity and
cumbersome syntax:

InventoryItem * item = new InventoryItem[1];
item->code = 1234;
item->price = 45.0f;

Therefore, eC introduces an easier to manage kind of classes
which does not present these caveats. Structures will typically be
allocated dynamically only in an array type scenario, when numerous
elements must be allocated in contiguous memory. Indeed, memory of
other kinds of classes can not be allocated as contiguous arrays.
Additionally, structure possess other advantages over the classes we
will describe next, especially for small, self-contained data type which
do not require a construction or destruction process. One of these
advantages is their compatibility with standard C structures.

12 See the chapter on structures in the first section for a full description of the
instantiation syntax.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 64

The more powerful classes we shall look into now are defined
using the class keyword typical of other object oriented languages
such as C++. It is also the same kind of class we used to define our
main application class in our very first Hello, World program. Instances
of such classes are always allocated dynamically. This differs from
C++ where objects can be declared statically (automatic variables,
using C++ terminology: MyClass object;) or dynamically (through
the C++ new operator: MyClass * object = new MyClass;). The eC
new operator is not needed to allocate these classes: instead, the usual
instantiation syntax is used. We could implement our InventoryItem
in a very similar manner:

class InventoryItem
{

 public:
 int code;
 float price;

 void Print()
 {
 printf("Code: %d, Price: %.2f\n", code, price);
 }
}

And an instantiation would be equally simple:

InventoryItem item { 1234, 45.0f };
item.Print();

An important point to underline here is that classes defined with
the class keyword (from now on referred to as regular classes) do not
support declarations following their definition blocks as struct classes
do. For that reason, the semicolon following the class definition block is
not required (but still allowed). However, for struct definitions, it is
mandatory and forgetting it will result in severe (sometimes cryptic)
syntax errors.

As you can see our definition of InventoryItem as a regular
class is very similar to the previous one as a structure. There is
however important subtle differences. First you might have noticed the
necessity for the public keyword. We will discuss member access
control and the differences between private and public members in a
dedicated chapter; let's just mention for now that by default, structure
members are public, whereas regular class members are private unless
otherwise specified. As we said, regular classes are allocated
dynamically. We mentioned in the chapter on pointers and memory
that this signifies we must make sure the memory dynamically
allocated is freed when it is no longer required. Furthermore, regular
classes undergo construction and destruction processes.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 65

Fortunately, eC greatly facilitates the process of managing the
destruction of these instances. Depending on where they are declared,
instances may be automatically destructed. The global instances for
example, are automatically destroyed on the program's termination.
Also, objects which are data member of other classes automatically get
freed up when instances of that class are destructed.

Other object instantiations must be freed manually with the
delete operator. The following example illustrates these various
scenarios. It uses out last InventoryItem class definition.

InventoryItem globalItem { 1234, 45.0f };

class InventoryApp : Application
{
 InventoryItem memberItem { 5678, 50.0f };

 void Main()
 {

InventoryItem localItem { 9012, 55.0f };

globalItem.Print();
memberItem.Print();
localItem.Print();

delete localItem;
 }
}

Notice how only localItem needs to be freed manually. The
globalItem will be destroyed automatically when the program
terminates, and memberItem as well when the InventoryApp instance
is destructed. Regular classes may be instantiated anonymously, but
the resulting expression must be stored somehow so that it can be
freed at some point. Otherwise it will result in a memory leak. A handle
for holding on to an object is declared like a regular variable:

InventoryItem item;

This does not instantiate or allocate any memory for an
InventoryItem object. This is not the same as struct classes, for
which the only difference between the above syntax and an
instantiation syntax is that the above is uninitialized, whereas using
the instantiation syntax everything is initialized to 0. Once declared, a
handle can then be assigned an anonymous instantiation as such:

item = InventoryItem { 1234, 45.0f };

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 66

The instantiation could also be done within the initializer:

InventoryItem item = InventoryItem { 1234, 45.0f }.

Since InventoryItem is expected here, this could be written
simply as:

InventoryItem item = { 1234, 45.0f };

Note that for readability purposes, omitting the class name
should only be done when the expected data type is obvious at the
location of the instantiation, so that we know what class is being
instantiated. It is important to point that global and member handles
are not automatically freed, since they are not by themselves
instantiations. However, it is possible to use the variable of an
instantiation as a handle, and thus reassign a new value to an instance
(ensuring the previous will also be freed). This should be done with
care. One thing to keep in mind is that if it was declared as a global or
member instantiation, such an instance will be automatically freed,
even if it was assigned a new value either from an anonymous
instantiation or from another named instantiation.

This automatic management of global and member instances is
done through reference counting. Instances of regular classes contain
a header featuring among other things a reference count, indicating
whether an object is still referenced by different parts of the program.
Every time an instance of a regular class is deleted with the delete
operator, its reference count is decremented by one. When it reaches
zero (or goes negative), the object is destroyed. Reference counting in
eC is only done for these two specific cases, as well as on a manual
basis. This differs from other programming languages where the entire
garbage collection process relies on automatic reference counting,
which can have a significant performance impact. Because reference
counting in eC is only done in key places (on which the developer has
great control), it does not affect the application performance. We will
cover the use of reference counting in details in the last section of this
book on Advanced eC programming.

Upon instantiation, the reference counter of an object is set to
zero by default. Thus it will be deleted upon the first use of the delete
operator, as it reaches -1 (since it is smaller or equal to zero). As we
start using them, you will find that many built in classes in the Ecere
SDK can actually manage themselves: their associated system will
handle their deletion. Example of this are the Window and derived
classes which we will use for building graphical user interfaces, and the
Socket class which we will use for network communication. These will
often not require the use of the delete operator, even when
instantiated anonymously or as a local variables.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 67

We started talking about construction and destruction. With
regular classes, the construction process involves the allocation of
memory and the construction of any instance members. The
destruction process naturally includes the destruction of all member
instances. Additionally, it is possible to define default values for
members by including assignments directly at the class level, as such:

class InventoryItem
{

 public:
 int code;
 float price;

 code = 1234; // Default value for code
 price = 45.0f; // Default value for price
}

 Arbitrary code can also be executed by defining a constructor
and or a destructor, which are respectively called while constructing
and destructing the instance. The constructor is simply defined as a
member method named after the class, whereas the destructor is
named with the class name preceded by a tilde (~) symbol (following
the C++ syntax):

class InventoryItem
{

 public:
 int code;
 float price;

 InventoryItem()
 {

printf("Constructing InventoryItem object\n");
 }
 ~InventoryItem()
 {

printf("Destructing InventoryItem object\n");
 }
}

However, constructors particularly do not play a role a
important as in C++, for example. Neither constructors nor destructors
can take in any parameters, and only a single one of each can be
defined within a class. Instead, members can be directly assigned a
value through the instantiation syntax initializers (either through the
data members, or the properties which we will describe in next
chapter). They cannot be specified a return type either. A constructor
should never fail, but returning false (they have an implicit bool
return type) will result in a the object instantiated to be null.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 68

At the beginning of this chapter we've brought up the concept
of a this object, which the methods are dealing with. Normally, these
are assumed to be of the class data type. In eC, it is possible to
override the data type for the this object. This is useful for some
scenarios, one of which is when we want to regroup within a class
methods which do not require dealing with a particular instance. We
can specify the data type by preceding the method's name by a data
type, followed by a double colon. Let's look at an example of defining a
method which does not require an instance to be called (a static
method in C++, although the static keyword never bears that
meaning in eC). We describe such a method by simply not writing
anything immediately before the double colon (do not get confused
with the separate void return data type):

class OtherClass
{
 void ::DoSomething()
 {

// There is no this object available here
 }
}

We can then call the DoSomething method either the usual
way, as an OtherClass instance member, or by invoking the method
directly from the class using the double colon operator:

OtherClass::DoSomething();

Similarly, we can define the this object to be of a specific data
type. These features are also available for structures. That method
could expect an instance of our earlier InventoryItem class:

class OtherClass
{
 void InventoryItem::PrintItem()
 {

Print();
 }
}
OtherClass object { };
InventoryItem item { };

Notice how we can directly call the Print method of the
InventoryItem class, because our this object is an InventoryItem.
Considering the above two instantiations, these are two valid ways to
invoke the PrintItem method with item becoming the this object:

object.PrintItem(item);
OtherClass::PrintItem(item);

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 69

When explicitly specifying as the method's this object data
type the class it is declared in, it indicates that the method may deal
with a different instance of the class than the object it was called from.
An example of such a method is given here:

class OtherClass
{
 void OtherClass::DoSomething()
 {

// this object here is not the calling instance

 }
}
OtherClass object1 { };
OtherClass object2 { };

The DoSomething method must be called with an OtherClass
argument, even if called from an OtherClass instance:

object1.DoSomething(object2);
OtherClass::DoSomething(object2);

It is important to note that the data type for the method will not
change in derived classes (we will learn about deriving classes in the
chapter on inheritance). Furthermore, this particular type of method is
known as an adaptable method and we will learn more about it in the
related chapter, also discussing instances virtual methods. Their use
will be common for the notification events used by graphical user
interface elements to communicate between them. However, it is not
important to fully understand these details of their inner workings at
this point.

It is also allowed to specify a this object type for regular
functions, outside of any class, which will result in the this object
being accessible as if the function was a regular method part of that
class:

void InventoryItem::PrintItem()
{
 // Call InventoryItem's Print method as if we were
 // inside a class method
 Print();
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 70

As of the time of writing this book, eC only supports a single
instantiation per declaration. Thus the following is not valid:

InventoryItem item1 { }, item2 { };

We already stated that it is not possible to allocate regular
classes in contiguous arrays like it is for struct classes. However an
array of handles can be used, each element being instantiated and
freed individually:

InventoryItem items[10];
int c;

// Allocate items
for(c = 0; c < 10; c++)
 items[c] = InventoryItem { };

...

// Free items
for(c = 0; c < 10; c++)
 delete items[c];

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 71

Inheritance
All under Heaven have a common Beginning

This Beginning is the Mother of the world.

-- Tao Te Ching, verse 52

We already learned how to create hierarchies by defining data
members of a class using another class as a data type. We will now
explore how to expand classes through another dimension:
inheritance. An inherited class contains all the members of the base
class, plus additional members specific to the derived (inherited) class.
An important concept is that an instance of the derived class is a valid
instance of the base class, and as such a cast to the base class is
perfectly valid. An instance of a derived class can also be used where
an instance of the base class is expected, without an explicit cast.

In eC, most kinds of data types support inheritance. In fact, we
will learn that some types can even inherit off a different kind of data
type. The base class is specified after a colon in the type definition. We
already encountered the inheritance syntax a few times in the previous
chapters, remember the following:

enum Element : byte { metal, wood, water, fire, earth };

enum PlanetOrDwarfPlanet : Planet

In the first example, the Element enumeration is to be derived
from the byte system data type, whereas the PlanetOrDwarfPlanet
enumeration is to be derived off the Planet enumeration. Remember
also the special entry point Application class:

class HelloApp : Application

This actually defines a new class HelloApp, inheriting from the
Application base class. Let's work with an example where we will
create both a base and derived class:

class BaseClass
{
 int a;
};

class DerivedClass : BaseClass
{
 int b;
};

DerivedClass test { a = 10, b = 20 };

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 72

Notice how the member a from BaseClass is available in
DerivedClass. Now let's demonstrate that the test instance is indeed
a valid BaseClass:

void PrintBase(BaseClass object)
{
 printf("a = %d\n", object.a);
}

class InheritApp : Application
{
 void Main()
 {
 PrintBase(test);
 }
}

You can see how we called the global function PrintBase with a
DerivedClass instance (test), when it expects a BaseClass.
PrintBase can successfully print the member a of DerivedClass,
because it inherits from BaseClass. However, using a BaseClass
instance where a DerivedClass instance is expected will generate a
compiler warning. Consider the following code:

void PrintDerived(DerivedClass object)
{
 PrintBase(object);
 printf("b = %d\n", object.b);
}

class InheritApp : Application
{

 void Main()
 {

 BaseClass base = test; // No need for a cast
// Generates a warning without the cast:

 PrintDerived((DerivedClass)base);
 }
}

An explicit cast must be performed to eliminate the warning.
Such a cast should only be done if we are certain the object we are
dealing with is indeed a DerivedClass instance.13

13 Regular classes contain runtime type information (RTTI) identifying which class they
are an instance of, but we will only cover this topic in the advanced eC programming
section since it should be used with great care. RTTI is often abused and therefore it
is encouraged not to rely on it to identify objects, and rather reorganize the code in
such a way that it is not required. Polymorphism (the subject of next chapter) is often
a solution.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 73

A class not only inherits data members, but methods and
properties as well. We will rewrite the above global functions using
methods instead.

class BaseClass
{
 int a;

 void Print()
 {
 printf("a = %d\n", a);
 }
};

class DerivedClass : BaseClass
{
 int b;

 void Print()
 {

BaseClass::Print();
 printf("b = %d\n", b);
 }
};

DerivedClass test { a = 10, b = 20 };

class InheritApp : Application
{

 void Main()
 {

BaseClass base = test;
// This will print both Derived and Base

 test.Print();
// This will print only Base
base.Print();
// This will print both Derived and Base
((DerivedClass)base).Print();

 }
}

Note how both the base and derived classes define a Print
method, each printing the member specifically defined in the
respective classes. Just like our global PrintDerived function invoked
PrintBase to print the base member, the DerivedClass Print method
invokes the BaseClass Print method. We must specify we intend to
call the Print method of the BaseClass using the double colon
operator (::) to do so, otherwise the DerivedClass Print method will
call itself recursively.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 74

As you can see in the various call examples within the Main
method, when methods with the same name are defined at multiple
inheritance levels of a derived class, the data type of the instance on
which it is called always determines which method is called, unless the
method is virtual (the next chapter will explain virtual methods). The
highest level method of the instance data type is the one being called.

The action of redefining a member with the same name as a
base member is called overriding, and can be done with any kind of
members (data, property or method). We will see that overriding is
most often done with virtual methods, which enables calling derived
methods from an instance declared as the base class (e.g. enabling the
second call example to print both Derived and Base without a cast).
Any other overriding should be done with great care, with proper
attention paid to the member access control rules.

In eC, by default inheritance is public, meaning all inherited
members from a base class retain their same access rights. It is
possible to inherit privately, therefore making all inherited members
private by preceding the base class by the private keyword. The
public keyword can also be used to explicitly mark the inheritance as
public. The particularities of public versus private members will be
covered in details in the upcoming chapter on access control.

Each level of inheritance of a class can have its own pair of
constructor and destructor, which will all be executed in sequence. The
base class is constructed first and destructed last.

A derived class can have its own member initializers for data
members and properties, and can also initialize the members of a base
class. For example DerivedClass could have a default value for the a
member defined in BaseClass, which will override any default value
set at the BaseClass level.

class DerivedClass : BaseClass
{
 int b;
 a = 10;
}

Inheritance can also be performed with structures, with a few
things to keep in mind. Data members cannot be overridden in derived
classes. Remember also that structures do not support either
constructors, destructors, nor class members initializers.

It is also possible for a regular class to inherit off a structure,
yielding some kind of hybrid between the two kinds of data types. Such
a class can have data initializers, constructors and destructors, but
does not contain any extra header information like a regular class.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 75

As such, its memory is directly compatible with a structure type
and does not take up any extra space, but it does not support
reference counting, run-time type information and does not have a
virtual method table. Instantiation of the derived class however works
exactly like a regular class: it is always allocated dynamically. Consider
the following example:

struct BaseStruct
{
 int a;
};

class DerivedClass : BaseStruct
{
 int b;
 a = 10;
}

class InheritApp : Application
{

 void Main()
 {

DerivedClass test { b = 20 };
delete test;

 }
}

Note how the instance must be deleted, just like a regular class.

A special syntax also exists to define a class without any header
information, but not inheriting from any structure:

class DerivedClass : struct
{
 int b;
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 76

Polymorphism and virtual methods
Form that includes all forms,

image without an image,
subtle, beyond all conception.

-- Tao Te Ching, verse 14

In the context of a programming language, polymorphism refers
to being able to deal with multiple data types through a consistent
interface. eC supports a kind of polymorphism through its inheritance
mechanism, known as subtyping polymorphism. In subtyping
polymorphism, instances of derived classes can be used where an
instance of a base class is expected. It is further enhanced by the
conversion properties which we will cover in a following chapter along
with unit types. Conversion properties enable additional data types,
not related by inheritance, to be usable by establishing how such
conversions should be performed.

In the previous chapter, we started explaining how virtual
methods enable method calls on base class instances to invoke
methods defined in derived classes. This is done by first qualifying the
definition of the base method with the virtual keyword, then
overriding the method in a derived class. Let's consider our example
from last chapter using a virtual method:

class BaseClass
{
 int a;
 virtual void Print()
 {
 printf("a = %d\n", a);
 }
};
class DerivedClass : BaseClass
{
 int b;
 void Print()
 {

BaseClass::Print();
 printf("b = %d\n", b);
 }
};

As you can see, it is not necessary to use the virtual keyword
again when overriding the Print method in DerivedClass. That is
because all methods named Print in derived classes will automatically
override the virtual method in BaseClass14.

14 Unless the base virtual method is no longer accessible due to access control
rules.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 77

It is also possible not to define a body when defining a virtual
function, simply by writing a semicolon (;) after the parameter
parentheses, like such:

class BaseClass
{
 int a;
 virtual void Print();
};

In this case, even if not overridden, the Print method can still be
called, but will not perform anything. If the method returns a value, it
will return a default bool value true (or an integer 1).15

Let's now look at the call to our virtual method:

DerivedClass test { a = 10, b = 20 };

class InheritApp : Application
{

 void Main()
 {

BaseClass base = test;
// This will now print both Derived and Base
base.Print();

 }
}

Even though the calling instance is declared as a BaseClass,
the method overridden in DerivedClass will be called. That is because
the instance base is pointing to (test) keeps a virtual method table
indicating which Print method should be called. Its virtual method
table is the one associated with the class used to instantiate it,
DerivedClass.

It might be important to note at this point that the destructors
of regular classes are always virtual in eC. Instances of classes without
header information seen in last chapter (such as those inheriting off a
structure) do not contain runtime class information nor a virtual table,
and can therefore only rely on the data type of the instance when
calling a method or deleting an object. It is thus primordial to ensure
they are declared as their highest level class when using the delete
operator on them, since the higher destructors will otherwise not be
invoked.

15 Although the compiler will not enforce it, a virtual method returning a data
type incompatible with a bool, such as a double or a pointer type should
provide a proper base implementation.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 78

Inside a class, a virtual method definition is in some aspects a
kind of storage. The virtual method table indeed stores a pointer to the
appropriate method associated in each entry. It is possible to override
a virtual method through an assignment to another method:

class DerivedClass : BaseClass
{
 int b;

 Print = PrintMembers;

 void PrintMembers()
 {

BaseClass::Print();
 printf("b = %d\n", b);
 }
};

Furthermore, the method needs not be a member of the class,
but could be a compatible global function, either through its this type
or an instance parameter. eC is very permissive in that respect for
assessing the compatibility of function pointers. For example the
following global definitions of PrintMembers would work equally well:

 void DerivedClass::PrintMembers()
 {

BaseClass::Print();
 printf("b = %d\n", b);
 }

 void PrintMembers(DerivedClass object)
 {

object.BaseClass::Print();
 printf("b = %d\n", object.b);
 }

In all examples up until now, instances have had their virtual
method table pointing to the one defined in their respective class. eC
introduces the possibility to override virtual methods at the instance
level as well. For the sake of efficiency, instances only dissociate their
virtual table from the virtual table of their class when a method is
explicitly overridden at the instance level. The assignment syntax for
overriding a method inside an instantiation is very similar to a data
member assignment:

DerivedClass test { a = 10, b = 20, Print = PrintMembers };

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 79

In addition to assigning methods defined elsewhere (either
global functions or class member functions), it is possible to override
virtual methods by writing a new function right inside the instantiation.
The syntax requires any previous initializer list to be terminated by a
semicolon. We could override Print inside our test instantiation as
such:

DerivedClass test
{
 a = 10, b = 20;

 void Print()
 {

BaseClass::Print();
 printf("b = %d\n", b);
 }
};

If you manually start writing the above Print method definition
inside an instantiation, you might notice a unique Ecere IDE feature
whereas the definition is automatically completed for you as you type
the opening parentheses. The return type for the function is corrected,
the parameter list is filled up (according to how the base virtual
function was defined), and the compound statement curly brackets are
put in place, leaving the cursor in the proper position to start writing
the function implementation.

Overriding virtual methods at the instance level provides
additional flexibility and dynamism to eC objects. It plays an important
role in defining events and customizing controls when building
graphical user interfaces with the Ecere SDK.

We previously mentioned the concept of adaptable methods,
which are defined by explicitly specifying the this type of a virtual
method as such:

class BaseClass
{
 virtual void BaseClass::DoSomething()
 {

 }
}

It is said to be adaptable because when overriding such a
method inside a member instantiation of another class derived from
the specified class (BaseClass), the this object automatically adapts
to the containing class. The following example illustrates the situation:

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 80

class DerivedClass : BaseClass
{
 int a;
 BaseClass test
 {

void DoSomething()
{
 // this type is adapted to a DerivedClass
 a = 10;
}

 };
}

Because the DoSomething method has been declared as an
adaptable method (by specifying it takes a different BaseClass object),
when overriding it inside the instantiation of test, which is itself within
the definition of DerivedClass (a class inheriting off BaseClass), the
this type within the overridden method becomes DerivedClass.

The concept of adaptable methods has many prerequisites
which might make it difficult to grasp, but it is very useful in the
context of defining graphical user interfaces. Note that in common
usage of the SDK, adaptable methods are used more often than they
are defined, in a way that feels very natural. We will look at them again
from a more practical point of view when defining events for controls
inside forms. A more generic type of adaptable methods also exists
which has less prerequisites, and enables the this object to be
adapted to any unrelated containing class. It is defined using the
any_object keyword:

class BaseClass
{
 virtual void any_object::DoSomething();
}

class OtherClass
{
 int a;
 BaseClass test
 {

void DoSomething()
{
 // this type is adapted to an OtherClass
 a = 10;
}

 };
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 81

Properties
Quantum theory requires us to give up the
idea that the electron, or any other object

has, by itself, any intrinsic properties at all.

-- David Bohm

eC places a lot of emphasis on properties. Properties are sort of
half-way between methods and data members. They provide methods
to set or get the property of an object, which is often stored internally
in a data member.

The advantages of properties are multiple. First, they allow for
instant visual feedback, for example in the case of the Ecere IDE’s
Object Designer. Code to reflect modifications can be executed in the
same operation as the assignment of a new value. The IDE has a
property sheet in which you can visualize and change the values of
properties, and get instant feedback in the visual designer window. The
IDE’s Object Designer is extremely powerful and versatile16. This
system all relies on the properties and was one of the original reasons
for designing eC and the Ecere Component Object Model.

Second, properties present this layer of protection over the data
members. A property can be made public whereas the data member
actually used to store the property can remain private. Properties can
also only contain a set or a get method, therefore making it write-only
or read-only. A property can also return or set a value which is not
stored exactly as such in the class. eC has a very clean syntax for
defining properties:

class Person
{
 int age;
public:
 property int age
 {
 get { return age; }
 set { age = value; }
 }
}

Notice how the definitions of set and get methods do not
include any return data type or parameters list, not even the familiar
empty parentheses. Of course, only one of each can be defined. The
special identifier value is available within the definition of a set
method. It represents the value to which the property is being set. A
property will evaluate as the the return value of its get method.

16 We will cover using the object designer and property sheet in a dedicated
chapter of next section.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 82

You might also have realized we used the same identifier (age)
for both the internal data member in which we store the age, and the
actual property. This is allowed in eC, and special rules exist to
differentiate whether you refer to the age data member or to the age
property (although typically, the default behavior satisfies most
needs). When used inside a method of the class itself, the data
member has priority. When used outside, the property has priority. To
enforce the use of the property from inside, it can be accessed by
preceding the member with "property::", for example our age
property could be internally accessed as: property::age. It is also
possible to enforce the use of the data member by obtaining its
address (since a property does not have an address), and then
dereferencing it, as such: *(&age). Member access control also plays
an important role in selecting a data member versus a property.
Indeed, inaccessible members can not be selected. Regular classes
data members are usually kept private, whereas properties are made
public.

Here is some examples of how one could set the age property
for a Person object, just as if it was a data member:

Person person { 20 };
Person person { age = 20 };

We could of course include some more code within our set and
get methods. Just as an example, we could print out to the console
that the age property is being changed:

set
{
 printf("age (previously %d), is now %d", value);
 age = value;
}

Although functionally equivalent to separate set and get
methods (for example a method void SetAge(int age) and another
one which would go int GetAge(), as it is common in C++),
properties behave exactly like data members. There is of course some
limitations; one of these is that the referencing operator cannot be
used on them, since properties do not have an address. For example,
the following operations can be performed with them, as if they were
regular data members:

person.age = 100 - person.age;
person.age += 10;
person.age *= 2;

These all go through the set and get methods to do their work.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 83

Properties do not necessarily need to be stored inside a data
member. As an example, we could instead decide to store the year of
birth of that person and compute the age accordingly. We'll assume
the person is born on January 1st, and store the current year in a global
variable for the sake of simplicity:

int currentYear = 2008;

class Person
{
 int yearOfBirth;
public:
 property int age
 {
 get { return currentYear - yearOfBirth; }
 set { yearOfBirth = currentYear - value; }
 }
}

Because they can execute code upon initialization, properties
can often play the role constructor parameters play in the C++
language. However, that must be done with care, as each property
being set is executed one at a time. Often actions require more than
one parameters to previously be set. Although repeating such action
on setting any of its property is one solution, it may pose a
performance problem if the process is the least computing intensive. In
these cases, a separate method to perform the action can be defined,
either using the values of already set properties or taking the values as
parameters. Another possible solution is to set all these properties
together as a structure or class object, or less ideally, only performing
the action on the last property to be set.

It is important to know that properties are set in the order in
which they are initialized. Furthermore, the order of unnamed
initializers follow their declaration order, and they can be intertwined
with data members.

Just like for data members, a class can define a default value for
a property (which will execute the proper set method) right inside the
class body.

In addition to the set and get methods, eC supports defining a
method whose purpose is to indicate whether a property has been set
or not. The isset method therefore, if defined, therefore allows an
additional unset state for a property. It can be implemented internally
through any mean, for example a simple boolean data member can
maintain the set status. An unset state may be useful in many
scenarios, for example in objects inheriting a default attribute from a
multi-objects hierarchy. Here is a sample usage of isset:

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 84

int defAttrib = 10;

class MyClass
{
 bool attribSet;
 int attrib;
 property int attrib
 {
 set { attrib = value; attribSet = true; }

get { return attribSet ? attrib : defAttrib; }
isset { return attribSet; }

 }
}

eC does not support virtual properties; a property belongs to a
specific class and should keep its meaning throughout the derived
classes which publicly inherits it. However, eC provides a mechanism
allowing a derived class to react (or adapt) to setting an inherited
property of a base class. The watch keyword is used alongside the
property to be monitored within the class definition to achieve this. A
derived class can watch the property of its base class, and act on it.
The following example demonstrates how it's done:

class BaseClass
{
 int attrib;
 property int attrib
 {

set { attrib = value; }
get { return attrib; }

 }
}

class DerivedClass : BaseClass
{
 void AdaptToAttribChange()
 {

// React somehow to the change of attribute
 }

 watch(attrib)
 {

 AdaptToAttribChange();
 }
}

Any time the attrib property of the base class is set, the
derived class can thus invoke the AdaptToAttribChange() method,
giving it a chance to react to the modification.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 85

Encapsulation and access control
The Master sees things as they are,

without trying to control them.
She lets them go their own way,

and resides at the center of the circle.
-- Tao Te Ching, verse 29

A concept fundamental to object oriented programming is
encapsulation. Encapsulation consists in hiding implementation details
from an interface, to prevent changes to the implementation from
impacting external pieces of code. In object oriented programming, the
major part of interfaces is presented in the form of classes, and thus
classes encapsulate a part of a program's functionality in a convenient
interface.

Encapsulation is closely related to access control, which
effectively separates the implementation internals from the interface.
The approach regarding access control taken by eC is very practical,
driven from the typical usage of application programming interfaces. It
is considerably different from that of C++, for example. The design
starts from the assumption that a limited number of developers should
work on a single module at a time, each of them having a good
understanding of all classes within the module they are working on. It
thus encourages modularity rather than sacrificing performance for
safety in the interaction between classes of a single module.

There are two types of modules in eC. The first type is simply a
single eC source file (with a .ec extension), whereas the second takes
the form of a dynamic shared library. We will cover in depth how to
work with multiple modules through a process known as importing in
the next chapter. The access control system of eC offers three distinct
modes dictating which kind of module will be allowed to access specific
code constructs.

Global definitions (structures, classes, enumerations,
functions, ...) can have an access control specifier, and member
declarations within a class or structure support access control as well.
Let's first look at how each of the three modes affect global definitions.
The global access mode is private by default. Global definitions
declared as private are accessible throughout the same target module
(a single project in the Ecere IDE, either a shared library module, or the
main application module executable). Private definitions are not
accessible outside the target module. To make them available outside,
they must be made public. They can be declared as public individually
by preceding each one with the public keyword, or the current global
access mode can be changed by writing public: in the code at the
global level. Similarly, the global access mode can be reverted back to
private by writing private:. The following code illustrates the syntax:

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 86

// Function1 is private (default global access mode)
void Function1()
{
}

// Class1 is private (default global access mode)
class Class1
{
}

// Class2 is specifically marked as public
public class Class2
{
}

public:
// Function2 is public (global access is now public)
void Function2()
{
}

// Class3 is public (global access is now public)
class Class3
{
}

// Class4 is specifically marked as private
private class Class4
{
}

private:

// Function3 is private (global access private again)
void Function3()
{
}

The remaining access mode is static, which takes on the same
meaning as the static keyword in C for qualifying global definitions.
Static definitions are only available within the same source file module
(.ec). In eC, static can be used the same way as public and private
followed by a colon (:) to change the default global access mode, and
can qualify all kinds of definitions (whereas it can only qualify variable
definitions in standard C). Non static (both public and private)
constructs, including variables, are automatically available in other eC
source files, whereas C requires the use of the extern keyword to
declare them as existing in another module.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 87

While we're covering the static keyword, let's mention the
only other usage for it in both C and eC. When used to qualify a
variable inside a function, that variable will subsist throughout the
entire program's life and always refer to the same memory. It will not
be allocated through the stack as a regular local variable would. It is
thus somehow equivalent to a global variable, but still limited in scope
to the compound statement within which it is declared. As such,
particular care must be given to static local variables when dealing
with multiple threads, as they are not inherently thread-safe the way
variables allocated on the stack are (each thread having its own stack).
Static local variables are useful for keeping track of values between
subsequent calls to a function, or to hold large chunks of memory not
suitable for the stack, but which we still want to localize inside the
particular function where it is used. Again, it is important to ensure the
function is not called from two different threads at the same time. The
following example demonstrates a static local variable:

void TestFunction()
{
 // counter will only be initialize to 0 on the
 // first call to TestFunction()
 static int counter = 0;
 counter++;
 printf("TestFunction has been called %d times\n",

counter);
}

As a reminder, the static keyword is not used with any other
different meaning in eC (except along the import keyword), unlike C++
which uses it for defining methods not working on a specific instance of
a class. Instead, that is done by specifying the method does not have a
this type (see previous discussion in the chapter on Classes, methods
and instances).

It is important to note that to export a construct using public
or private requires all dependencies for that construct to be
accessible at the same level. The exposed interface of public
constructs cannot use private or static constructs, whereas private
constructs cannot make use of static constructs. For example, a public
function cannot use a private or static class for its return type or any of
its parameters. Similarly, a private function cannot make use of a static
class. Doing so will generate a compiler error. Here is a sample
conflicting scenario:

class PrivateClass { }
public void PublicFunction(PrivateClass object) { }

This results in the following error from the compiler:
error: Public function making use of a private class

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 88

Also, public classes can only inherit from private classes if the
inheritance is private (see previous chapter on inheritance discussing
the difference between private and public inheritance). Currently,
static classes can only be inherited from classes which are static as
well. For example the following reports an error (inheritance is public
by default):

class PrivateClass { }
public class PublicClass : PrivateClass { }

Whereas it is fine if inheritance is done privately:

class PrivateClass { }
public class PublicClass : private PrivateClass { }

Finally, a special global declaration access mode exists for
these times when absolute, utter, complete, unequivocal compatibility
with C is required. It is specified in exactly the same way, using the
default keyword. In that compatibility mode, nothing is exported
through the eC mechanisms. Non static variables declared in default
mode must thus be accessed from other source files by declaring them
using the extern keyword. Structures and enumerations declared with
default only support the standard C usage (used through a typedef
or by preceding the structure identifier with the struct keyword). As
such, they will not be available in the component object model system
(for features such as reflective programming, live documentation,
dynamic class constructions). Classes, which are simply not available
in standard C, will not be affected by the default mode, since they do
not introduce any potential conflict. They should however not be
declared using this mode to prevent any ambiguity (they would fall
back to a private access mode). Another implication of the default
definition mode is that it will prevent any mangling from name spaces
(effectively putting the definition in the global namespace). When
including header files17 ending with the .h extension, the global
definition mode is automatically set to default. eC headers should end
with a .eh extension to have the usual private access mode.

Both public and private access control modes also apply to
qualifying members of structures and classes, enabling encapsulation
of what is to be kept private inside a specific module. As of the time of
writing, eC does not yet support static access for members. Not being
able to declare members statically has the unfortunate consequence
that a data type used anywhere in the return types or parameters of
functions, or the data declarations will not be allowed to be declared as
static, even though is not required outside the .ec source file. Future
improvements to the language and compiler should resolve this issue.

17 We haven't mentioned header files yet because eC mostly eliminate the need for
them, although they are still available. The including process is still available for the
few occasions in which it is useful to eC, and for interoperability with C libraries.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 89

We already mentioned that following typical usage, and in line
with the C++ defaults, structure members are public by default,
whereas class members are automatically private. Just like global
definitions, these can be changed either by group using the access
control keyword followed by a colon (public: or private:) inside the
class definition, or individually by preceding specific member
definitions by the access keyword. Any member not part of an
interface should be kept as private. An example follows:

class Class1
{

// Method1 is private (default class access mode)
void Method1()
{
}

// data1 is private (default class access mode)
int data1;

// property1 is specifically marked as public
public property int property1
{
 set { data1 = value; }
 get { return data1; }
}

public:
// Method2 is public (class access is now public)
void Method2()
{
}

// property2 is public (class access is now public)
property int property2
{
 set { data2 = value; }
 get { return data2; }
}

// data2 is specifically marked as private
private int data2;

private:

// Method3 is private (class access private again)
void Method3()
{
}

}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 90

Typically, class data members are kept private whereas public
properties are used to access them indirectly. Refraining from
exposing data members publicly when building a shared library
module, ensures binary compatibility with future versions of an
interface, even if the data layout of a class change completely and if
the user application derives classes from that modified class. That is
made possible because eC amalgamates classes at program
initialization time rather than at compile time.

Even though a member of a class (or structure) is private, it can
still be accessed by other classes within the same module (we're
referring here to target modules - dynamic libraries, the same will be
true of .ec source file modules relating to static member definitions
when they are made available). This is in great contrast with other
object oriented languages such as C++. The only way to do so in C++
is by establishing complicated friendship relationships between
multiple classes and possibly between classes and specific members
(using the friend keyword), which in the light of Ecere philosophy adds
unnecessary complexity. It otherwise alternatively results in writing
superfluous methods to access said data members indirectly. In the
context of a module often developed by a single developer, these
practices are respectively counterproductive or have a negative impact
on performance.

Therefore eC focuses on protecting private members strictly
from being accessed outside of the module in which a class is defined,
thus in effect encapsulating the entire implementation of an interface
inside a module rather than single constructs such as a class. It is
encouraged to group related classes together inside a single source file
module (to benefit among other things from the static access control of
global definitions, which will later be expanded to member definitions).
This is again in contrast with the approach of having a source file for
every class which is common in Java and C++ (where it most often
also has a matching header file), resulting in a huge number of files
difficult to manage.

Modules exporting public constructs whose interface makes use
of other constructs in an other imported target module, must import
that module publicly to ensure that the constructs required for the
interface will also be available.

Other than controlling what is exported from a module, access
control also affects the initializers of instantiations within that module.
Private members can only be initialized by name (identifier =
[value]), and are thus not part of the default unnamed initialization
list. Thus the first default unnamed initializer in the instantiation of a
class is reset to its first public member declared directly in that class,
skipping any members declared in its base classes. The following
example illustrates this:

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 91

class BaseClass
{
 int a;

 public:
 int c, d;
}

// 1 is assigned to c, 2 is assigned to d
// a can still be initialized by name in same module
BaseClass baseObject { 1, 2, a = 5 };

class PublicDerivedClass : BaseClass
{
 int e;
public:
 int f, g;
}

// 3 is assigned to c, 4 is assigned to d
// a can still be initialized by name in same module
PublicDerivedClass pubDerivedObject { 3, 4, a = 5 };

class PrivateDerivedClass : private BaseClass
{
 int e;
public:
 int f, g;
}

// 3 is assigned to f, 4 is assigned to g
// a can still be initialized by name in same module
PrivateDerivedClass prvDerivedObject { 3, 4, a = 5 };

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 92

Importing and working with multiple modules
Things derive their being and nature

by mutual dependence and
are nothing in themselves.

-- Siddha Nagarjuna

So far we've written all our programs as a single .ec source file
module. We've seen how to export an interface outside a shared
library module using the public access mode, and we know that such
shared library modules can be imported either publicly or privately. In
this chapter we'll learn how to import modules (such as the Ecere
runtime library) as well as how to build libraries.

However, first we will keep to a single target module but using
multiple .eC source file module. As previously mentioned, any non
static eC constructs (either private or public) will automatically be
available across such modules upon importing that module, either
directly or indirectly (e.g. by importing another module which in turn
imports the needed module). The import keyword must be used
followed by the name of the module between double quotes (typically
stripped of the extension, although it could also contain the .ec). An
example sharing a class (TestClass) and a function (TestFunction)
across two modules follows. Other constructs such as variables,
structures or enumerations would be available exactly the same way.

module1.ec:
import "module2"

 TestClass object { };
class TestApp : Application
{
 void Main()
 {

TestFunction();
 }
}

module2.ec:
class TestClass
{
 TestClass()
 {

printf("TestClass Constructed\n");
 }
};
void TestFunction()
{
 printf("TestFunction Called\n");
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 93

The import process of eC does
not include the contents of the imported
module inside the file which imports it,
and thus is very different from the C
#include preprocessor directive. Both
modules must be added to the project,
as displayed in this screen shot:

Only eC modules included in the project can be imported; the
module name following the import keyword is being matched with each
source file name (through generated symbols we will talk about on
next page). Therefore regardless of the source directory hierarchy (e.g.
a source module could be located in src/common/supportModule.ec),
it would still be imported using only the file name, not the full path
(import "supportModule"). With source file modules, the access
control is not modifiable as all source modules are part of the same
target module, and thus private constructs are available throughout.
Thus naming conflicts might arise between them. They must be
resolved by either renaming or, if possible, specifying one of them to
be static to a single source module.

As you can see, importing a source module is quite trivial. We'll
now learn how to implement the above using shared library modules.
The shared library will consist of the module2, whereas the application
will only consist of module1. First, let's create a new shared library
project. We will call it module2.

We will add the source file module2.ec, which will be modified
to export the declarations outside the shared library by making them
public as such:

module2.ec:
public class TestClass
{
 TestClass() { printf("TestClass Constructed\n"); }
};

public void TestFunction()
{
 printf("TestFunction Called\n");
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 94

Upon a successful build, we will obtain a shared library in the target
directory (debug/ by default), either in the form of module2.dll on Windows,
libmodule2.so on Linux or libmodule2.dylib on MacOS X. We will
need to copy this module either to the project directory of our
application (which will consist of only module1.ec) or to a location
within our dynamic library path (PATH environment variable on
Windows, LD_LIBRARY_PATH on Linux).

We can use the exact same code for module1.ec, and simply
remove module2.ec from our previous project. However, if you chose
to do so it is important to first ensure the module2.sym file is deleted
from the intermediate object directory to avoid a conflict with our
newly built module2 shared library. It was previously generated when
module2.ec was part of our main application project. When both the
symbols generated from an eC module and a shared library of the
same name exist, the eC module has priority. These files with the .sym
extension are the results of a precompilation process across all source
files of a target module and it is what enables the eC source file import
mechanism.

You should now be able to build the main application project,
which will make use of that second module we just built. If you
previously built the project, it is recommended to use either the menu
option Project / Clean or Project / Rebuild. At this moment, symbols are
only regenerated when their associated source file is modified, and
their potential dependencies are not automatically rebuilt. It is possible
that other source files require to be rebuilt in order to match the new
symbols of a modified source files. If in doubt, a project rebuild will
rebuild all symbols and source files. Please also note that having a
source file opened in the IDE which imports a dynamic library module
will make use of it for enhanced code editing and designing support. It
will be necessary to close all documents directly or indirectly importing
the module should you want to modify or overwrite the dynamic
module.

The modules imported this way are being loaded dynamically at
program initialization. It therefore doesn't require any additional linking
step and makes migrating portions of code from source modules into
shared library modules very simple. There is no need for header files,
and the programming interface is directly available within the runtime
shared library. Only the exported constructs are available to the
external user, while the rest remains invisible outside of the
implementation. As we will learn in the Advanced eC programming, eC
also supports loading these modules at runtime and using their
functionality through reflective programming (which allows you among
other things to instantiate a class or call a method on an instance by
its name text string), thus it is very well suited for plug-in
architectures.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 95

When working with more than two levels of dynamic modules
(e.g. an application importing a module which in turn imports another
module), the import access mode of the deepest module affects
whether it will automatically be visible in the higher level module or
not. The default is private importing which prevents the higher level
module from accessing the constructs of the deeper module without
explicitly importing that module itself (it makes all imported public
constructs private). Preceding import by the public keyword will
ensure the dependent module is made available as well, which as we
discussed in last chapter, is a requirement if the module interface
makes use of any construct in that dependent module. We will
illustrate this by using of the Point structure of the Ecere runtime
library in a public interface:

// If public is omitted here we'll get an error:
 // Public function making use of a private class

public import "ecere"

public void TestFunction(Point point)
{

}

An application requires the Component Object Framework
which powers the eC languages if its project contains any source file
with the .ec extension. The framework is packaged as a separate
shared library (ecereCOM.dll or libecereCOM.so) , and is also
integrated inside the Ecere runtime library (ecere.dll or libecere.so)
to prevent requiring two libraries. By default, a new project links with
the Ecere runtime, but can be changed (in the project settings, see
picture below) to link only with the COM framework if it does not make
use of the runtime functionality. All other modules can be imported
without actually being linked by the dynamic linker with the application
making use of them.

It is also possible to make use of either the Ecere runtime
library, the Ecere Component Object Framework, or any eC shared
library module by linking to it statically, that is to include the library
within the executable file rather than as an external shared library.
However, because the framework is oriented towards shared libraries,
a shared library version of of the module must first be built for the
compiler to load module's available components.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 96

This is usually not a problem, as most often both a static and
dynamic version of the module is used for different configurations (e.g.
debug, release). The static library selection in the Target Type option
of the New project dialog (illustrated a few pages earlier) can be used
to build a static library. The target type can also be used at any time in
the Project settings dialog. After a static version of the module has
been built, to link statically with a module, the import directive in the
module making use of it must then be followed by the static keyword
as such (which takes on a different meaning here than its access
control usage):

import static "module2"

The name of the module must also be added to the Additional
Libraries box seen in last screen shot, and its path must be added to
the Additional Library Paths if it is not in a location specified in the
relevant Global Settings dialog option.

In a similar manner, the import keyword can also be followed
by remote which indicates classes specifically marked as remote
declared in that module will be used remotely through the Ecere
Distributed Component Object Model. A dedicated chapter in the
section on network programming will cover this feature in details.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 97

Name Spaces
The unnameable is the eternally real.

Naming is the origin
of all particular things.

-- Tao Te Ching, verse 1

As soon as we start working with multiple modules, building
libraries or using a third party library, it is commonplace for naming
conflicts to arise. The fact of names being used up is sometimes
referred to as name pollution. The access control in eC allows to
restrict the availability of identifiers to a single source file module or
library module, and thus can prevent a great deal of name pollution.
For this reason, constructs should always be kept as tightly knit as
possible, with only the minimal required interface being exposed.
However, name collisions can still occur between multiple libraries
being developed by different development groups, or one might want
to reuse particular meaningful identifiers in different contexts. Name
spaces were designed to solve these issues.

The design of eC provides a way to avoid conflicts and regroup
constructs pertaining to a certain type of functionality within name
spaces. However, in order to preserve the syntax elegance as well as
the development efficiency, eC does not require extra prefixes or
special directives instructing which name spaces to check in order to
use constructs defined within name spaces, unlike other programming
languages. It features automatic name space resolution, effectively
searching through all name spaces to resolve identifiers. The support
of name spaces in eC is not yet completed, although what is currently
implemented is fully functional. Among other things, a compiling option
to disable that automatic name space resolution, as well as a warning
system identifying ambiguous automatic resolution are planned.

By default, all constructs are declared within the global name
space. It is possible to change that
default by changing the Default
Name Space in the project settings
compiler options.

Constructs can be accessed from a specific name space by
preceding them by its name space followed by the double colon (::),
e.g. MyNameSpace::variable. A construct can also be declared to be in
a specific name space the same way:

int MyNameSpace::variable;

Name spaces can contain other name spaces (sub name
spaces). When specifying a name space at declaration, it is
concatenated to the current name space.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 98

It is possible to change the current name space by using the
namespace keyword as such:

namespace MyNameSpace;

Anything following that directive will be declared within that
name space until the namespace keyword is used again to change the
current name space again. Note that using the namespace keyword
does not concatenate the new name space to the current one, but
always to the global name space (or the default name space specified
in the compiler option). Thus a variable subsequently simply declared
as:

int variable;

will be accessible as MyNameSpace::variable. Automatic name space
resolution first attempts to resolve identifiers within the current name
space.

Sub name spaces can also be specified at once, both for
defining the current name space and for declaring constructs within it:

int MyNameSpace::SubNameSpace::variable1;

namespace MyNameSpace::SubNameSpace;

int SubSubNS::variable2;

Here the full identifier of variable2 will be:

MyNameSpace::SubNameSpace::SubSubNS::variable2;

Luckily automatic resolution allows to access it simply as
variable2.

Name spaces apply equally to structures, classes,
enumerations, functions and variables. For example a class could be
defined in MyNameSpace as follows:

class MyNameSpace::MyClass { };

As was previously noted while we were discussing the access
control topic, using name spaces in eC will result in mangling
identifiers to take the name space into account. This results in an
incompatibility with C, which doesn't support any kind of name spaces.
Using the default declaration mode specifier overrides any current
name space (thus placing a declaration in the global name space) and
ensures C compatibility.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 99

Units and conversion properties

Can you coax your mind from its wanderings
and keep to the original oneness?

-- Tao Te Ching, verse 10

In the first section, we've covered all basic C data types to store
integer and real numeric values. We've also mentioned the typedef
keyword which allows to declare new type identifiers mapping to
existing data types. eC further extends this concept by introducing the
concept of units. A unit data type is any type which can be represented
by a single numeric value, a fact which correlates them to the usage of
typedef in C. Yet, just like structures and classes, methods and
properties can be defined for them, thus allowing them to behave like
completely new data types. A particularly useful feature is the notion
of conversion properties establishing a relationship between any two
data types.

A typical usage example of units is to implement measurement
units such as meters and feet. Through conversion properties, the
equivalence between a designated reference unit and other related
units is automatically set up. Chain conversions by way of intermediate
data types are also made possible. Nonetheless, conversion properties
are not limited to unit data types, but also apply to more complex
types such as structures and classes. Conversions between all these
different types can be defined as well. We will also quickly revisit
enumerations. Just like units, enumerations are internally represented
by a single numeric value and both methods and properties can be
defined for them.

Let's first look at the syntax for defining a new unit data type.
The class keyword is used in the same way as for defining regular
classes, along with a base class identifying a unit data type. The base
class can either be an integer or a floating point type specifier, or
another unit data type. As an example, we'll define a Distance class:18

class Distance : double { }

One advantage of such a unit definition over a typedef is that it
can be imported across eC modules (just like regular classes), while a
typedef must be placed within a header file to be included. Units
cannot have data members, and thus the only initializer within their
instantiation is the value to be assigned to a unit variable, for example:

Distance distance { 5 }; // distance is assigned 5

18 Some of the example classes we'll define in this chapter already exist in the Ecere
runtime library, and thus would conflict if used while the "ecere" module is imported.
The samples should also be linked with the ecereCOM library instead of ecere.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 100

The previous definition is equivalent to the following:

Distance distance = Distance { 5 };
Distance distance = 5;

Note that although we declared Distance to use double
precision floating point, we did not specify in which particular
measurement unit we would store values it will hold. Ideally, the same
unit will always be used to ensure all arithmetic operations make
sense. Arithmetic can be performed just like on regular classes:

Distance a { 3 };
Distance b { 4 };
// sqrt is standard C math function for square root
Distance c = sqrt(a * a + b * b); // c will be 5

Although eC does not yet support operator overloading, unit
data types and automatic conversions can accommodate many use
cases which would normally require operator overloading to implement
in C++ for example. The simple example above could be implemented
simply as a typedef, but adding methods and conversions would
require making it a class in C++, and arithmetic operations would no
longer be supported without overloading operators. In eC, unit data
types always support arithmetic operations, and the only thing left to
do is to establish the relationship between different units qualifying the
same measurement.

Conversion properties, supported through all eC data types,
allows an implicit conversion of one data type into another. The syntax
for a conversion property is very similar to a regular property, except it
does not have a name, only a data type. The specified type is the type
for which we want to define a to and from conversion, through the get
and set method, respectively. Only one of two related class needs to
define the conversion for it to be available in both direction.
Furthermore, anywhere a data type is expected, any other type from
which exists a conversion to this expected type will be equally usable.

When multiple units of measurement are used, a reference unit
must be defined. If a generic unit type such as Distance is defined, not
invoking any particular measurement unit, the reference unit can be
mapped to that generic unit type by defining a conversion property
with neither a set nor a get method. In our example below we use
meters as the reference distance unit. The empty conversion property
to and from Distance defines Meters as directly mapping to the
Distance unit. Consequently, all units deriving off Distance will be
stored internally in this reference unit (Meters).

class Meters : Distance { property Distance { } }

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 101

Let's now define an imperial measurement unit, feet. We will
need to define the conversion between feet and the reference unit
(meters): a meter is 3.2808399 feet.

class Feet : Distance
{
 property Meters
 {

set { return value * 3.2808399; }
get { return this / 3.2808399; }

 }
}

If we defined another Distance unit, such as Centimeters, we
could operate on Feet and Centimeters even though we didn't define
a direct conversion between them.

Note how the set method returns a value, rather than setting a
data member (a unit class does not have any data member). This
syntax might be improved in the future to additionally support the
more intuitive syntax this = value * 3.2808399. The value
identifier within the set method is the Meters unit to be converted
from. The value returned from the set method is the value converted
to Feet. In the get method, the this identifier represents the Feet
value to be converted into Meters. This behavior of the properties set
and get methods is shared among all kinds of data types stored as a
single numeric value, which include the enumerations, units and the bit
collection classes we will cover in the next chapter.

Now that we have defined two related distance measurement
units, we can look at automatic conversions in action. A simple
example is converting meters into feet:

Feet value = Meters { 5 };
printf("%f\n", value);

The output will be the expected 16.404200. Observe how using
the instantiation syntax we qualify measurement values with a
particular unit, such as Meters in this last example. These units are
carried through arithmetic operations in much the same way they are
in scientific calculations. When directly using numeric values, the
expected data type dictates the unit of these non qualified values. For
example, the following assignment is understood by the compiler to
represent 5 meters plus 2 feet:

Feet value = Meters { 5 } + 2; // 2 means Feet { 2 }

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 102

However when no unit data type is expected and only one of
the two addition operands has a specified type, the type of the other
operand will be dictated by the operand specifying it:

double value = Feet { 5 } + 2;

This is equivalent to the following, making value equal to 7:

double value = Feet { 5 } + Feet { 2 }

As me mentioned before, internally feet will be stored as a
double holding the measurement in the reference unit which we
defined to be meters. However when assigning a Feet unit to a double
or when using it where no data type is expected (such as in the last
printf call), we will still get the numeric feet value. In order to obtain
the internal value, a cast to the base unit type must be performed:

Feet value = Meters { 5 };
printf("%f\n", (Distance)value);

When using untyped destination results, it is possible for
expressions to be ambiguous when mixing up units. Thus the compiler
wouldn't know if the following double value should represent feet or
meters:

double value = Feet { 10 } + Meters { 20 };

In this particular case the following warning will be issued:

operating on Feet and Meters with an untyped result, assuming Feet

Different classes of operators behave differently with units.
We've pointed out that when using the + or – operator, operands
without an associated unit type either take on the destination unit, if
there is one, or otherwise the unit of the other operand. This would not
make sense however for multiplication or division:

double value1 = Feet { 5 } / 2;
Meters value2 = Feet { 5 } * 2;

In both of these examples, the constant 2 does not have an
implied unit, and simply divide or multiply the distance by 2.

Note that the initializer of a unit could be any expression
resolving to the base data type of the unit (double in our examples).
Thus the following syntax would be perfectly valid to specify inches as
a fraction of a foot:

Meters value = Feet { 5 + 8 / 12.0 };

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 103

One advantage of defining classes implementing conversions
inside shared library modules is that the compiler will be able to
perform any constant conversion at compile time. The compiler
currently cannot perform compile time conversions for those defined in
a non previously compiled module, as it will require a code interpreter.

We've seen conversion properties in action with units. Let's use
them with other eC object oriented constructs, starting with structures.
We'll use polar and Cartesian coordinates as an example.

#include <math.h>19

struct CartesianPoint { Distance x, y; };
struct PolarPoint
{
 double angle; // angle in radians
 Distance distance;
 property CartesianPoint
 {
 set
 {
 angle = atan220(value.y, value.x);
 distance = sqrt(

value.x * value.x + value.y * value.y);
 }
 get21

 {
 value.x = cos(angle) * distance;
 value.y = sin(angle) * distance;
 }
 }
};

With these structures and conversions in place, a PolarPoint
can be provided in lieu of a CartesianPoint, and vice versa. The
following example demonstrates:

void HandleCPoint(CartesianPoint point) { }
void HandlePPoint(PolarPoint point) { }
void Test()
{
 HandleCPoint({ 3, 4 });
 HandleCPoint(PolarPoint { 3.14 * 53.1 / 180, 5 });
 HandlePPoint(CartesianPoint { 3, 4 });
}

19 We exceptionally need to include <math.h> here because by default cos & sin
functions expect an Angle unit type defined in the ecere module.

20 atan2 is a standard C function returning the arc tangent from the two sides at right
angle of a triangle

21 Note how value is set to return the CartesianPoint, as structure conversion properties
require. A more intuitive return { x, y }; syntax might be implemented in the future.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 104

Defining conversion properties for regular classes implies
dynamic memory management, and is thus not used frequently. In fact
there is currently limitations to using conversion properties along with
regular classes, only the get method is usable. In practice, this means
that at the moment one can only return a regular class, either from
another regular class or from another construct such as a structure. It
also prevents two way conversions from functioning with the current
state of things. These limitations are mainly due to the fact that
conversion properties are not as useful with regular classes as they are
with unit data types for example, thus efforts have not yet been
focused on supporting them fully. The following example illustrates
what is already supported:

class ClassOne
{
 public int a, b;
}

class ClassTwo
{
 public int a, b;

 property ClassOne
 {

// Our sample conversion between ClassOne & ClassTwo
// consists in merely matching members a and b
// This new instance here will need to be freed

 get { return ClassOne { a, b }; }
// A current compiler limitation prevents this set
// method from being used properly
set { a = value.a; b = value.b; }

 }
}

void DealWithOne(ClassOne object) { delete object; }

class TestApp : Application
{
 void Main()
 {
 ClassOne a { };
 ClassTwo b { };

 DealWithOne(a); // This will delete a
 DealWithOne(b); // This will delete a new ClassOne

 delete b; // b still needs to be deleted
 }
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 105

Let's now revisit enumerations, and see how we can add
methods and properties to them as well. These can be placed after the
enumeration values, terminated by a semicolon. The following example
converting between classical Chinese elements and their associated
planets demonstrates how it's done:

enum Element : byte
{
 wood, fire, earth, metal, water;
 property Planet
 {

get
{
 switch(this)
 {

case wood: return jupiter;
case fire: return mars;
case earth: return saturn;
case metal: return venus;
case water: return mercury;

 }
}
set
{
 switch(value)
 {

case jupiter: return wood;
case mars: return fire;
case saturn: return earth;
case venus: return metal;
case mercury: return water;

 }
}

 }
 property Planet planet
 {

get { return (Planet)this; }
 }
 void PrintValue() { printf("%d\n", this); }
};

void Test()
{
 Element element = mercury;
 Planet planet = fire;
 // A regular property get can be used with enums:
 planet = element.planet;

 element.PrintValue(); // Methods can be used too
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 106

As previously mentioned, conversions between different kinds
of data types are also possible. Just as an example, we'll implement a
conversion to and from our Distance unit in our PolarPoint structure
from earlier:

#include <math.h>

struct CartesianPoint { Distance x, y; };
struct PolarPoint
{
 double angle; // angle in radians
 Distance distance;
 property CartesianPoint
 {
 set
 {
 angle = atan2(value.y, value.x);
 distance = sqrt(

value.x * value.x + value.y * value.y);
 }
 get
 {
 value.x = cos(angle) * distance;
 value.y = sin(angle) * distance;
 }
 }

 property Distance
 {

get { return distance; }
set { distance = value; }

 }
};

Now let's say we'd like to compute the distance in feet between
the origin and a point at 300 meters along the x-axis and 400 meters
along the y-axis, we can simply write the following line of code, making
use of multiple conversions:

Feet d = (PolarPoint)CartesianPoint { 300, 400 };

The result will be ~1640.42 feet (500 meters).

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 107

Bit collection classes
The Tao can't be perceived.

Smaller than an electron,
it contains uncountable galaxies.

-- Tao Te Ching, verse 32

Bit collection classes are the last kind of data type available in
eC which we have not yet covered. Like structures, they can hold
multiple data members, yet the entire class can be used as an integer
value. They provide a very elegant manner to manage flag collections
stored in integer types for example, which typically require numerous
cumbersome macros in C (using #define preprocessor directives).
With these, they further remove the need for binary logic operators,
and instead provide a much more intuitive way of modifying or
checking the values of specific bits. The syntax for defining bit
collection classes is inspired from the declaration syntax of C
structures bit fields specifiers. Bit fields specify exactly how many bits
one particular data member should take. For example the following will
reserve only a single bit for each boolean data member:

struct CarOptions
{
 bool electricLocks:1, airConditioned:1;
 bool automaticTransmission:1;
} options = { true, true, false };

C bit fields however do not allow using the defined structured as
an integral value, which makes it incompatible with the unsigned
integer type used for flag collections. The following code is not valid:

uint a = options; // incompatible expression: options

The bit collection classes of eC solve this problem by remaining
integer data types, yet letting both the size and position (in number of
bits) of every member be specified. Specifying the position allows the
bit order to be different from the declaration order, and thus a specific
memory layout can be achieved while keeping the desired initialization
order. The total number of bits for all the data members can not
exceed the number of bits of the integer size the bit collection class is
derived from (which can be any integral type, usually either uint or
uint64 for more storage). However it is possible for multiple data
members to overlap, as union data members would overlap. A bit
collection class definition equivalent to the above structure would be:

class CarOptions : uint
{
 public bool electricLocks:1, airConditioned:1
 public bool automaticTransmission:1;
}

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 108

Note the similarity between the bit collection class definition
and a unit definition, the only difference being that bit class definitions
contain data members (with bit field specifiers). In this first example
we only specified the size to be taken by each data member (1 bit).
Like other constructs, bit classes use the eC instantiation syntax. Thus
the following are all valid uses of our CarOptions bit class:

CarOptions options { true, true, false };

CarOptions options = { true, true, false };

CarOptions options;
// options is undefined until it is initialized:
options = { true, true, false };

CarOptions options { }; // All members are zeroed

// Non initialized instantiation members will 0:
CarOptions options { electricLocks = true, true };

Each flag can then be individually accessed like a regular data
member, while options can still be used with integral types:

bool electricLocks = options.electricLocks;
uint a = options;
options.automaticTransmission = true;
options.electricLocks ^= true; // Toggle with XOR

We'll apply bit collection classes to color representation for our
next examples, where we will specify the bit position as well. Our
objective will be to define a Color bit collection class22 which has the
following memory layout:

MSB (Most Significant Bit) LSB (Least Significant Bit)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 8 bits for red 8 bits for green 8 bits for blue

Since 8 bits are used to represent each red, green and blue
component, the intensity value will range from 0 to 255. The default
memory layout in bit classes, following the declaration order, is from
LSB to MSB. Therefore in our previous example, electricLocks would
be stored in LSB (bit 0), airConditioned would be stored in bit 1, and
so on. We'd like to keep the familiar RGB initialization order, which
does not match the memory layout going from blue to red, so we will
need to explicitly specify bit positions.

22 Similar Color classes are defined in the Ecere runtime library, therefore the "ecere"
module should not be imported or linked with to try out the examples in this chapter.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 109

The number after the second colon is the starting bit position
for each data member:

class Color : uint
{
public:
 byte r:8:16; // 8 bits, starting at bit 16
 byte g:8:8; // 8 bits, starting at bit 8
 byte b:8:0; // 8 bits, starting at bit 0
}

We can then use our Color class to define the background color
of this book's cover as such:

Color color { 53, 98, 133 };

And each member can be accessed individually, just like a
regular data member:

int r = color.r;
color.r = 100;

It is also possible to use it as an integer. For example the
following call prints it in the hexadecimal syntax typical of HTML:

printf("#%6X\n", color);

Note that if neither size nor position is specified, the size will be
that of the data type qualifying the member (e.g., 8 bit for bytes), and
the bit position always increases by the number of bits taken by each
member.

Just like other eC object oriented constructs, bit collection
classes also support conversion properties. We will demonstrate their
usage to perform conversions between our Color class and a common
16 bit color format. Here is the layout for the "565" RGB format we will
convert with:

 MSB LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 5 bits for red 6 bits for green 5 bits for blue

With this format the intensity for green has one more bit, thus
supporting a range of 0 to 127, while red and blue intensities go from 0
to 63. We perform the conversions by shifting the bits of each color
component so as to always keep the highest bits, by 3 bits (8-5) for red
and blue components, and by 2 bits (8-6) for green.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 110

Here is our Color565 class implementation:

class Color565 : uint16
{
public:
 byte r:5:11; // 5 bits, starting at bit 11
 byte g:6:5; // 6 bits, starting at bit 5
 byte b:5:0; // 5 bits, starting at bit 0
 property Color
 {
 set

{
 return Color565
 {
 value.r>>3, value.g>>2, value.b>>3
 };
}

 get { return Color { r<<3, g<<2, b<<3 }; }
 }
}

Together our Color and Color565 classes can be used to
perform conversions very easily:

// Starting colors
Color color { 53, 98, 133 }; // 0x356285
Color565 color565 = { 6, 24, 16 }; // 0x3310

// Automatic conversions
Color color24 = color565;
Color565 color16 = color;

Just to illustrate how bit collection classes can simplify code, the
conversions would look like this without them:

uint color24 =
((((color565) & 0xF800) << 8) |
 (((color565) & 0x7E0) << 5) |
 (((color565) & 0x1F) << 3));

uint color16 =
((((color) & 0xF80000) >> 8) |
 (((color) & 0x00FC00) >> 5) |
 (((color) & 0x0000F8) >> 3));

These numbers had to be computed from the binary layout of
both classes. Conversions through bit collection classes greatly
reduces the risk for errors by automatically performing the work, based
on the layout specified in the class definitions and the simple
conversion property code. Their usage is also a lot more elegant.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 111

Section 3

Building Graphical
User Interfaces

The form designer and property sheet
Static controls: labels and pictures
Events, buttons and option boxes
Inputting data through edit boxes
Displaying message boxes

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 112

The form designer and property sheet

The Ecere development environment provides a powerful,
extensible visual editor system for designing objects of particular
kinds. Bundled within the Ecere user interface system, a form designer
allows visual edition of Window classes and objects. The Window class
is the foundation of all Ecere graphical user interface elements: the
main application window, all dialogs and all controls are all derived
from a Window class.

The object designer works hand in hand with the
Property/Methods Sheet, which lists all available properties for the
class or object being edited. Together with the object designer, they
form the basis for the Ecere Rapid Application Development (RAD)
visual programming system. Another element of the RAD system is the
toolbox which can be found on the right-hand side of the IDE. The
toolbox shows available classes of instances which can be added to the
class being edited by simply dragging them with the mouse onto the
designer's visual representation.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 113

Furthermore, all these are integrated and automatically
synchronized with the regular source code text editor. Whenever a
modification is made in the source code, it will be reflected in the
object designer as soon as it gets focus. The opposite is also true:
modifications made from the object designer or property sheet will be
visible in the code editor when it gets the focus back. In contrast with
other RAD systems, all the code generated by the object designer and
property sheet system is meant to be user-editable, and easily so. It
does not generate any caution comment or reserved code areas, but
rather strictly compact code directly associated with the visual
modifications.

Let's create our first application with a graphical user interface.
We'll use the New Project dialog again, but this time we'll leave the
Create Form check box checked:

Right after pressing the OK button, we're taken to the form
designer which contains an empty form. In the screen shot on the
previous page, we simply dragged an edit box and a button from the
toolbox onto the form. The F8 accelerator key can be used to toggle
between the form designer and the code editor. The code for an empty
form project will look like this:

import "ecere"

class Form1 : Window
{
 text = "Form1";
 background = activeBorder;
 borderStyle = sizable;
 hasMaximize = true;
 hasMinimize = true;
 hasClose = true;
 clientSize = { 400, 300 };
}

Form1 form1 {};

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 114

You can see that the Ecere runtime library is automatically
imported when creating a new form project; it is required since that is
where the user interface functionality is located. Then a Form1 class is
defined, inheriting from the Window base class. The properties set by
default will assign some size to it and will equip it with a title bar as
well as the typical maximize, minimize and close buttons. Then we
have a global instantiation of the Form1 class.

This form application, as it is generated by the New Project
dialog, is ready to be ran. It will create that form previewed in the form
designer, and will execute until the form is closed. Recalling the first
chapter of this book and its Hello, World example, one might wonder
exactly where the entry point for this application and its execution
code are. The answer is that the Ecere runtime library contains a
default Application class which will be used if none is defined in the
application. The GuiApplication class (derived from Application)
provides the basis for building GUI based applications. Applications
making use of the user interface constructs of the runtime library
should either derive their application class from it, or simply not define
any Application class, in which case GuiApplication will be used.

GuiApplication takes care of overriding the familiar Main
method, making the application run as long as a window is still up on
the screen. Note that if we comment the instantiation of the Form
class, the application will thus start and exit right away.
GuiApplication also provides three new virtual methods which can be
overridden to perform operations at specific times:

virtual bool Init(void);

Executes when the application initializes.

virtual bool Cycle(bool idle);

Executes at every iteration of the main user interface loop,
idle being true if no input has been processed within this cycle.

virtual void Terminate(void);

Executes before the application terminates.

GuiApplication also encapsulates various and functionalities
pertaining to the application as a whole, some of which we will cover in
the rest of the book.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 115

Let's go back to the form designer. As it first appears when
creating a new form or project, the form itself is selected (as visually
indicated by the eight white resizing boxes and gray moving border
surrounding it). The property and method sheets will always reflect the
current selection, listing the properties or methods for that particular
class or object. The form itself is the class being edited: it matches an
actual class definition (derived from Window) in the source file opened
in the code editor. When dragging controls from the toolbox onto the
form, instances of these control classes are added to the class. These
too can be selected, and will show up in the property sheet as well. In
the drop box at the top, you fill find the form class first and the
instances indented right under it:

Whereas modifying the properties for the class affect the
default properties value for the class, modifying the properties for the
instances will affect the instantiations' member properties initializers.
When moving the cursor through the code editor, the instantiation or
class inside which the cursor is located will automatically get selected.
Similarly, selecting a class or instance from the property sheet or
designer will move the cursor in the code editor to the associated
code. Only classes with an associated class designer (such as the
Window classes) will be found in the property sheet. When more than
one class exists within a single source file, a different class can be
selected through the drop box selector. Note that it is possible to drag
instances from the toolbox directly inside an appropriate class within
the code editor.

When dragging a control inside a form, the control is
automatically associated to the form through both the parent and by
extension the master properties. The parent window of a control is the
window within which its drawing is contained. The control is thus said
to be a child of that window. The master window is the window to
which it belongs and which will receive all notifications (e.g. a button
click notification) from the control. The control is thus said to be a
slave of that window. When not explicitly set, the master window is set
to the parent window. Both the parent/child and master/slave
relationships are very important concepts in the Ecere GUI system and
have many other implications, some of which will be covered in the
upcoming chapters. Using the form designer, it is possible to reassign a
control to another parent, for example another control within the form.
You can do so by dragging it onto another control within the form. You
will find its drawing area to be restricted to that new parent control.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 116

The same thing could be done by entering the name of that
other the control in the parent property. Every class and instantiation
in the designer will have that special name property, which is strictly a
design mode property and can be found within the Design collapsable
property group. It uniquely identifies the class or instantiation, and will
also be reflected in the identifier used within the code.

The property sheet, designer and code editor together offer
many alternative ways to design and edit a class and its components.
A selection in the designer can be moved by simply dragging around
the object or the gray border surrounding it. It can be resized using the
eight white boxes placed on the border. The property sheet lists
properties such as size and position (within the Layout group), where
the coordinates can be edited either together or individually by
expanding the property (of a structure data type). When a property is
selected in the property sheet, but the designer is the active window,
starting to type will automatically activate the property sheet and
typed text will go in the currently selected property. For example, by
default the text property is selected and thus typing text from the form
designer will modify the text displayed on the control.

Many properties are often connected together in a complex
manner, and thus the order in which they are initialized might matter.
For example, changing its text will automatically affect the size of a
button. Similarly, selecting a different font will also update the button
to be properly resized. All modifications, whether from the property
sheet, designer or code editor, all have immediate synchronized visual
feedback in the designer.

Feel free to explore the various controls and their properties
available to get an overview of the Ecere GUI system and the form
designer. Starting from the next chapter, we will start looking at some
of the available controls.

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 117

Copyright © 2007-2008 Jérôme Jacovella-St-Louis – All Rights Reserved 118

